Fuzion Logo
fuzion-lang.dev — The Fuzion Language Portal
»

option

option

(T 
type
)
:
switch T, nil
[Contains abstract features]
option -- feature wrapping a value or nothing

option represents an optional value of type T

Type Parameters

Functions

 => 
option option.T
[Contains abstract features]
absolute value
(O 
type
, o switch.this)
 => 
switch.this
[Inherited from  switch]
[Contains abstract features]
returns o if outcome is ok, otherwise return the outcome's own
error.
(f Unary switch.this switch.A)
 => 
switch.this
[Inherited from  switch]
[Contains abstract features]
synonym for infix >>=
 => 
equatable_switch switch.A switch.B
[Inherited from  switch]
[Contains abstract features]
this switch as an equatable_switch
 => 
list switch.A
[Inherited from  switch]
[Contains abstract features]
converts switch into a list of either a single element in case
switch.this.exists or `nil`otherwise
 => 
option switch.A
[Inherited from  switch]
[Contains abstract features]
convert this switch to an option
 => 
outcome switch.A
[Inherited from  switch]
[Contains abstract features]
convert this switch to an outcome
(e error)
 => 
outcome switch.A
[Inherited from  switch]
[Contains abstract features]
convert this switch to an outcome
 => 
String
[Redefinition of  switch.as_string]
[Contains abstract features]
converts option to a string

returns the result of $T for an option containing an instance
of T, alternatively returns $nil for an option that is nil.
(B 
type
, f Unary (option B) option.T)
 => 
option B
[Contains abstract features]
monadic operator

Same as non-generic >>=, but also maps to a different type B.
 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.

There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
 => 
bool
[Inherited from  switch]
[Contains abstract features]
Does this switch contain a value of type A?
 => 
switch.A
[Inherited from  switch]
[Contains abstract features]
unwraps a switch that is known to contain a value

this can only be called in cases where it is known for sure that this switch
is not nil. A runtime error will be created otherwise.
(default Lazy switch.A)
 => 
switch.A
[Inherited from  switch]
[Contains abstract features]
unwrap value or get default
(other option option.T)
 => 
bool
[Contains abstract features]
not equals operator
(other option option.T)
 => 
option option.T
[Contains abstract features]
modulo operator
(other option option.T)
 => 
option option.T
[Contains abstract features]
exponentation operator
(other option option.T)
 => 
option option.T
[Contains abstract features]
multiplication operator
(other option option.T)
 => 
option option.T
[Contains abstract features]
addition operator
(other option option.T)
 => 
option option.T
[Contains abstract features]
subtraction operator
(other option option.T)
 => 
option option.T
[Contains abstract features]
division operator
(other option option.T)
 => 
bool
[Contains abstract features]
lower or equal than operator
(other option option.T)
 => 
bool
[Contains abstract features]
lower than operator
(other option option.T)
 => 
bool
[Contains abstract features]
equals operator
(other option option.T)
 => 
bool
[Contains abstract features]
greater or equal than operator
(f Unary switch.this switch.A)
 => 
switch.this
[Inherited from  switch]
[Contains abstract features]
monadic operator

redefines:

(B 
type
, MB 
type
:monad (monad.infix >>=~.B) (monad.infix >>=~.MB), f Unary MB monad.A)
 => 
MB
[Inherited from  monad]
[Abstract feature]
[Contains abstract features]
monadic operator to another monad

Apply f to elements of type A and wrap them in MB.
(f Unary bool option.T)
 => 
bool
[Contains abstract features]
monadic operator for bool result, false for nil
(other option option.T)
 => 
bool
[Contains abstract features]
greater than operator
 => 
bool
[Contains abstract features]
Does this option contain no value of type T?
 => 
bool
[Contains abstract features]
is zero
(MMA 
type
:monad monad.MA monad.join.MMA, a MMA)
 => 
monad.MA
[Inherited from  monad]
[Abstract feature]
[Contains abstract features]
join operator
 => 
bool
[Inherited from  switch]
[Contains abstract features]
Does this switch contain a value of type A?
(f Lazy switch.this)
 => 
switch.this
[Inherited from  switch]
[Contains abstract features]
if this switch is nil return the result of f
otherwise just return this switch.
(T 
type
, e Unary error switch.B)
 => 
switch.A
[Inherited from  switch]
[Contains abstract features]
get A or cause an `exception T`
(default Lazy switch.A)
 => 
switch.A
[Inherited from  switch]
[Contains abstract features]
unwraps an switch if it exists, returns default value otherwise.
 => 
bool
[Inherited from  switch]
[Contains abstract features]
short-hand postfix operator for '!exists'
 => 
bool
[Inherited from  switch]
[Contains abstract features]
short-hand postfix operator for 'exists'
 => 
bool
[Inherited from  switch]
[Contains abstract features]
short-hand prefix operator for '!exists'
 => 
String
[Inherited from  Any]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
 => 
option option.T
[Contains abstract features]
'prefix +' (identity)
 => 
option option.T
[Contains abstract features]
'prefix -' (negation)
 => 
option i32
[Contains abstract features]
sign function resulting in `-1`/`0`/`+1` depending on whether `numeric.this`
is less than, equal or larger than zero
 => 
switch.A
[Inherited from  switch]
[Contains abstract features]
value of a switch that is known to contain a value

This can only be called in cases where it is known for sure that this
switch is not a B. A runtime error will be created otherwise.
(default switch.A)
 => 
switch.A
[Inherited from  switch]
[Contains abstract features]
value of a switch or default if switch contains B

Type Functions

 => 
String
[Inherited from  Type]
[Contains abstract features]
string representation of this type to be used for debugging.

result has the form "Type of '<name>'", but this might change in the future

redefines:

 => 
Type
[Inherited from  Type]
[Contains abstract features]
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.

redefines:

(T 
type
)
 => 
bool
[Inherited from  Type]
[Contains abstract features]
Is this type assignable to a type parameter with constraint `T`?

The result of this is a compile-time constant that can be used to specialize
code for a particular type.

is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false

it is most useful in conjunction preconditions or `if` statements as in

pair(a,b T) is
same
pre T : property.equatable
=>
a = b

or

val(n T) is

# check if T is numeric, if so
# return true if n > zero,
# return nil if T is not numeric
#
more_than_zero option bool =>
if T : numeric then
n > T.zero
else
nil
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 => 
String
[Inherited from  Type]
[Contains abstract features]
name of this type, including type parameters, e.g. 'option (list i32)'.
 => 
String
[Inherited from  Type]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.

NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913

redefines:

(a monad.type.A)
 => 
monad.type.MA
[Inherited from  monad]
[Abstract feature]
[Contains abstract features]
return function
 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get a type as a value.

This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.

`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
0.094dev (2025-06-18 15:08:51 GIT hash 89cffc23ae669b0898a5564fefbf793fcb8e5ca7 built by fridi@fzen)