Fuzion Logo
fuzion-lang.dev — The Fuzion Language Portal
»

u128

u128

u128 -- 128-bit unsigned integer values

Fields

Constructors

:
Any
 is
[Inherited from  numeric]
[Contains abstract features]
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`

Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.

Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.

Functions

 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
absolute value
 => 
array u8
[Inherited from  wrap_around]
[Contains abstract features]
this integer as an array of bytes (little endian)
 => 
i128
[Contains abstract features]
 => 
i16
[Contains abstract features]
 => 
i32
[Contains abstract features]
 => 
i64
[Contains abstract features]
 => 
i8
[Contains abstract features]
 => 
String
[Inherited from  integer]
[Contains abstract features]
convert this to a decimal number in a string. If negative, add "-" as
the first character.

redefines:

(base u32)
 => 
String
[Inherited from  integer]
[Contains abstract features]
convert this to a number using the given base. If negative, add "-" as
the first character.
(len i32, base u32)
 => 
String
[Inherited from  integer]
[Contains abstract features]
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
 => 
u16
[Contains abstract features]
 => 
u32
[Contains abstract features]
 => 
u64
[Contains abstract features]
 => 
u8
[Redefinition of  numeric.as_u8]
[Contains abstract features]

redefines:

 => 
String
[Inherited from  integer]
[Contains abstract features]
create binary representation
(len i32)
 => 
String
[Inherited from  integer]
[Contains abstract features]
create binary representation with given number of digits.
 => 
i128
[Contains abstract features]
 => 
String
[Inherited from  integer]
[Contains abstract features]
create decimal representation
(len i32)
 => 
String
[Inherited from  integer]
[Contains abstract features]
create decimal representation with given number of digits.
 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.

There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
 => 
bool
[Redefinition of  numeric.fits_in_u8]
[Contains abstract features]
does this u128 fit into an u8?

redefines:

(b integer.this)
 => 
integer.this
[Inherited from  integer]
[Contains abstract features]
greatest common divisor of this and b

note that this assumes zero to be divisible by any positive integer.
 => 
String
[Inherited from  integer]
[Contains abstract features]
create hexadecimal representation
(len i32)
 => 
String
[Inherited from  integer]
[Contains abstract features]
create hexadecimal representation with given number of digits.
 => 
u128
[Contains abstract features]
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
(other u128)
 => 
u128
[Redefinition of  numeric.infix %]
[Contains abstract features]

redefines:

(other integer.this)
 => 
bool
[Inherited from  integer]
[Contains abstract features]

redefines:

(other integer.this)
 => 
bool
[Inherited from  integer]
[Contains abstract features]
test divisibility by other
(other u128)
 => 
u128
[Redefinition of  integer.infix &]
[Contains abstract features]
bitwise and, or and xor operations

redefines:

(other num.this.wrap_around.this)
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
multiplication, with check for overflow

redefines:

(other num.this.wrap_around.this)
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other num.this.wrap_around.this)
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
exponentiation for positive exponent

'zero ** zero' is permitted and results in 'one'.

redefines:

(other num.this.wrap_around.this)
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other num.this.wrap_around.this)
 => 
option num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
exponentiation with overflow checking semantics

'zero **? zero' is permitted and results in 'one'.

redefines:

(other num.this.wrap_around.this)
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
exponentiation with saturating semantics

'zero **^ zero' is permitted and results in 'one'.

redefines:

(other num.this.wrap_around.this)
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
exponentiation with wrap-around semantics

'zero **° zero' is permitted and results in 'one'.
(other num.this.wrap_around.this)
 => 
option num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other num.this.wrap_around.this)
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other u128)
 => 
u128
[Redefinition of  num.wrap_around.infix *°]
[Contains abstract features]
(other num.this.wrap_around.this)
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
addition, with check for overflow

redefines:

(other num.this.wrap_around.this)
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other num.this.wrap_around.this)
 => 
option num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other num.this.wrap_around.this)
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other u128)
 => 
u128
[Redefinition of  num.wrap_around.infix +°]
[Contains abstract features]
(other num.this.wrap_around.this)
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
subtraction, with check for overflow

redefines:

(other num.this.wrap_around.this)
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other num.this.wrap_around.this)
 => 
option num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other num.this.wrap_around.this)
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]

redefines:

(other u128)
 => 
u128
[Redefinition of  num.wrap_around.infix -°]
[Contains abstract features]
(through has_interval.this)
 => 
interval has_interval.this
[Inherited from  has_interval]
[Contains abstract features]
defining an integer interval from this to other, both inclusive

special cases of interval a..b:

a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
(other u128)
 => 
u128
[Redefinition of  numeric.infix /]
[Contains abstract features]
division and remainder with check for div-by-zero

redefines:

(other integer.this)
 => 
bool
[Inherited from  integer]
[Contains abstract features]
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values

redefines:

(other integer.this)
 => 
num.fraction integer.this
[Inherited from  integer]
[Contains abstract features]
create a fraction
(other u128)
 => 
u128
[Redefinition of  integer.infix <<]
[Contains abstract features]

redefines:

(other u128)
 => 
u128
[Redefinition of  integer.infix >>]
[Contains abstract features]
shift operations (unsigned)

redefines:

(other u128)
 => 
u128
[Redefinition of  integer.infix ^]
[Contains abstract features]

redefines:

(other u128)
 => 
u128
[Redefinition of  integer.infix |]
[Contains abstract features]

redefines:

(other integer.this)
 => 
num.fraction integer.this
[Inherited from  integer]
[Contains abstract features]
create a fraction via unicode fraction slash \u2044 '⁄ '
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]
check if this type of wrap_around is bounded

wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation

redefines:

 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
u16
[Contains abstract features]
 => 
u32
[Contains abstract features]
 => 
u64
[Contains abstract features]
 => 
u8
[Redefinition of  integer.low8bits]
[Contains abstract features]

redefines:

 => 
String
[Inherited from  integer]
[Contains abstract features]
create octal representation
(len i32)
 => 
String
[Inherited from  integer]
[Contains abstract features]
create octal representation with given number of digits.
 => 
i32
[Redefinition of  num.wrap_around.ones_count]
[Contains abstract features]
count the number of 1 bits in the binary representation of this
integer.
(other u128)
 => 
bool
[Contains abstract features]
would addition + other cause an overflow or underflow?
(other num.this.wrap_around.this)
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]
would exponentiation 'this ** other' cause an overflow?
(other u128)
 => 
bool
[Contains abstract features]
would multiplication * other cause an overflow or underflow?
(other u128)
 => 
bool
[Contains abstract features]
would subtraction - other cause an overflow or underflow?
 => 
interval has_interval.this
[Inherited from  has_interval]
[Contains abstract features]
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
 => 
interval has_interval.this
[Inherited from  has_interval]
[Contains abstract features]
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max

NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
 => 
String
[Inherited from  Any]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
basic operations: 'prefix +' (identity)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
preconditions for basic operations: true if the operation's result is
representable and defined for the given values

default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
negation, with check for overflow

redefines:

 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values

redefines:

 => 
option num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
overflow checking operations

redefines:

 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
saturating operations

redefines:

 => 
u128
[Redefinition of  num.wrap_around.prefix -°]
[Contains abstract features]
neg, add, sub, mul with wrap-around semantics
 => 
num.this.wrap_around.this
[Inherited from  wrap_around]
[Contains abstract features]
bitwise NOT

redefines:

 => 
integer.this
[Inherited from  integer]
[Contains abstract features]
bitwise NOT (Unicode alias)
 => 
i32
[Inherited from  numeric]
[Contains abstract features]
sign function resulting in `-1`/`0`/`+1` depending on whether `numeric.this`
is less than, equal or greater than zero
 => 
i32
[Contains abstract features]
count the number of trailing zeros in this integer.
(other u128)
 => 
bool
[Contains abstract features]
(other u128)
 => 
bool
[Contains abstract features]
(other u128)
 => 
bool
[Contains abstract features]
(other num.this.wrap_around.this)
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]
(other num.this.wrap_around.this)
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]
 => 
bool
[Redefinition of  num.wrap_around.wrapped_on_neg]
[Contains abstract features]
would negation cause an overflow?
(other num.this.wrap_around.this)
 => 
bool
[Inherited from  wrap_around]
[Contains abstract features]

Type Functions

 => 
u128
[Contains abstract features]
returns the number in whose bit representation all bits are ones
 => 
String
[Inherited from  Type]
[Contains abstract features]
string representation of this type to be used for debugging.

result has the form "Type of '<name>'", but this might change in the future

redefines:

 => 
i32
[Inherited from  wrap_around]
[Contains abstract features]
how many bytes does this integer use?
 => 
Type
[Inherited from  Type]
[Contains abstract features]
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.

redefines:

(a u128, b u128)
 => 
bool
[Contains abstract features]
equality
(v u32)
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the value corresponding to v in whatever integer implementation we have,
maximum in case of overflow
(a u128.this.type)
 => 
u64
[Contains abstract features]
create hash code from this number
(T 
type
)
 => 
bool
[Inherited from  Type]
[Contains abstract features]
Is this type assignable to a type parameter with constraint `T`?

The result of this is a compile-time constant that can be used to specialize
code for a particular type.

is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false

it is most useful in conjunction preconditions or `if` statements as in

pair(a,b T) is
same
pre T : property.equatable
=>
a = b

or

val(n T) is

# check if T is numeric, if so
# return true if n > zero,
# return nil if T is not numeric
#
more_than_zero option bool =>
if T : numeric then
n > T.zero
else
nil
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(a u128, b u128)
 => 
bool
[Contains abstract features]
total order
 => 
u128
[Redefinition of  num.wrap_around.type.max]
[Contains abstract features]
maximum
 => 
u128
[Redefinition of  num.wrap_around.type.min]
[Contains abstract features]
minimum
 => 
String
[Inherited from  Type]
[Contains abstract features]
name of this type, including type parameters, e.g. 'option (list i32)'.
 => 
u128
[Redefinition of  numeric.type.one]
[Contains abstract features]
identity element for 'infix *'

redefines:

 => 
String
[Inherited from  Type]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.

NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913

redefines:

 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix * operation. Will create product of all elements
it is applied to.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix *^ operation. Will create product of all elements
it is applied to, stopping at max/min value in case of overflow.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix + operation. Will create sum of all elements it
is applied to.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix +^ operation. Will create sum of all elements it
is applied to, stopping at max/min value in case of overflow.
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the constant '10' in whatever integer implementation we have, maximum in case of overflow
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the constant '2' in whatever integer implementation we have, maximum in case of overflow
 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get a type as a value.

This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.

`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
 => 
u128
[Redefinition of  numeric.type.zero]
[Contains abstract features]
identity element for 'infix +'

redefines:

0.094dev (2025-06-18 15:08:51 GIT hash 89cffc23ae669b0898a5564fefbf793fcb8e5ca7 built by fridi@fzen)