Fuzion Logo
fuzion-lang.dev — The Fuzion Language Portal
»

integer

integer

:
numeric
 is
[Contains abstract features]
integer -- abstract ancestor of integer numbers

integer is the abstract ancestor of integer numbers that provides operations
from numeric plus a division remainder operation %, bitwise logical operations,
shift operations and gcd. Also, integers can be used to build fractions.

Constructors

:
Any
 is
[Inherited from  numeric]
[Contains abstract features]
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`

Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.

Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.

Functions

 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
absolute value
 => 
String
[Redefinition of  Any.as_string]
[Contains abstract features]
convert this to a decimal number in a string. If negative, add "-" as
the first character.

redefines:

(base u32)
 => 
String
[Contains abstract features]
convert this to a number using the given base. If negative, add "-" as
the first character.
(len i32, base u32)
 => 
String
[Contains abstract features]
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
 => 
u8
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
this numeric value as an u8
 => 
String
[Contains abstract features]
create binary representation
(len i32)
 => 
String
[Contains abstract features]
create binary representation with given number of digits.
 => 
String
[Contains abstract features]
create decimal representation
(len i32)
 => 
String
[Contains abstract features]
create decimal representation with given number of digits.
 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.

There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
does this numeric value fit into an u8? This is redefined by children
of numeric that support `as_u8`.
(b integer.this)
 => 
integer.this
[Contains abstract features]
greatest common divisor of this and b

note that this assumes zero to be divisible by any positive integer.
 => 
String
[Contains abstract features]
create hexadecimal representation
(len i32)
 => 
String
[Contains abstract features]
create hexadecimal representation with given number of digits.
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
basic operations: 'infix %' (division remainder)
(other integer.this)
 => 
bool
[Redefinition of  numeric.infix %!]
[Contains abstract features]

redefines:

(other integer.this)
 => 
bool
[Contains abstract features]
test divisibility by other
(other integer.this)
 => 
integer.this
[Abstract feature]
[Contains abstract features]
bitwise operations
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
basic operations: 'infix *' (multiplication)
(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
basic operations: 'infix **' (exponentiation)
(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
basic operations: 'infix +' (addition)
(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
basic operations: 'infix -' (subtraction)
(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
basic operations: 'infix /' (division)
(other integer.this)
 => 
bool
[Redefinition of  numeric.infix /!]
[Contains abstract features]
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values

redefines:

(other integer.this)
 => 
num.fraction integer.this
[Contains abstract features]
create a fraction
(other integer.this)
 => 
integer.this
[Abstract feature]
[Contains abstract features]
(other integer.this)
 => 
integer.this
[Abstract feature]
[Contains abstract features]
shift operations
(other integer.this)
 => 
integer.this
[Abstract feature]
[Contains abstract features]
(other integer.this)
 => 
integer.this
[Abstract feature]
[Contains abstract features]
(other integer.this)
 => 
num.fraction integer.this
[Contains abstract features]
create a fraction via unicode fraction slash \u2044 '⁄ '
 => 
bool
[Contains abstract features]
check if this type of integer is bounded

returns false unless redefined by a specific implementation of integer
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
u8
[Abstract feature]
[Contains abstract features]
the least significant byte of this integer
 => 
String
[Contains abstract features]
create octal representation
(len i32)
 => 
String
[Contains abstract features]
create octal representation with given number of digits.
 => 
String
[Inherited from  Any]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
basic operations: 'prefix +' (identity)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
preconditions for basic operations: true if the operation's result is
representable and defined for the given values

default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
basic operations: 'prefix -' (negation)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
overflow checking operations
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
saturating operations
 => 
integer.this
[Abstract feature]
[Contains abstract features]
bitwise NOT
 => 
integer.this
[Contains abstract features]
bitwise NOT (Unicode alias)
 => 
i32
[Inherited from  numeric]
[Contains abstract features]
sign function resulting in `-1`/`0`/`+1` depending on whether `numeric.this`
is less than, equal or greater than zero

Type Functions

 => 
String
[Inherited from  Type]
[Contains abstract features]
string representation of this type to be used for debugging.

result has the form "Type of '<name>'", but this might change in the future

redefines:

 => 
Type
[Inherited from  Type]
[Contains abstract features]
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.

redefines:

(a property.orderable.this.type, b property.orderable.this.type)
 => 
bool
[Inherited from  orderable]
[Contains abstract features]
equality implements the default equality relation for values of this type.

This relation must be

- reflexive (equality a a),
- symmetric (equality a b = equality b a), and
- transitive ((equality a b && equality b c) : equality a c).

result is true iff 'a' is considered to represent the same abstract value
as 'b'.
(v u32)
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the value corresponding to v in whatever integer implementation we have,
maximum in case of overflow
(a property.hashable.this.type)
 => 
u64
[Inherited from  hashable]
[Abstract feature]
[Contains abstract features]
create hash code for this instance

This should satisfy the following condition:

(T.equality a b) : (T.hash_code a = T.hash_code b)
(T 
type
)
 => 
bool
[Inherited from  Type]
[Contains abstract features]
Is this type assignable to a type parameter with constraint `T`?

The result of this is a compile-time constant that can be used to specialize
code for a particular type.

is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false

it is most useful in conjunction preconditions or `if` statements as in

pair(a,b T) is
same
pre T : property.equatable
=>
a = b

or

val(n T) is

# check if T is numeric, if so
# return true if n > zero,
# return nil if T is not numeric
#
more_than_zero option bool =>
if T : numeric then
n > T.zero
else
nil
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(a property.partially_orderable.this.type, b property.partially_orderable.this.type)
 => 
bool
[Inherited from  partially_orderable]
[Abstract feature]
[Contains abstract features]
does a come before b or is equal to b?
 => 
String
[Inherited from  Type]
[Contains abstract features]
name of this type, including type parameters, e.g. 'option (list i32)'.
 => 
numeric.this.type
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
identity element for 'infix *'
 => 
String
[Inherited from  Type]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.

NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913

redefines:

 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix * operation. Will create product of all elements
it is applied to.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix *^ operation. Will create product of all elements
it is applied to, stopping at max/min value in case of overflow.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix + operation. Will create sum of all elements it
is applied to.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix +^ operation. Will create sum of all elements it
is applied to, stopping at max/min value in case of overflow.
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the constant '10' in whatever integer implementation we have, maximum in case of overflow
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the constant '2' in whatever integer implementation we have, maximum in case of overflow
 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get a type as a value.

This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.

`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
 => 
numeric.this.type
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
identity element for 'infix +'
0.094dev (2025-06-18 15:08:51 GIT hash 89cffc23ae669b0898a5564fefbf793fcb8e5ca7 built by fridi@fzen)