☰
u8
u8
u8 -- 8-bit unsigned integer values
Fields
Constructors
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` firstFunctions
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
u8 -- 8-bit unsigned integer values
Fields
Constructors
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` firstFunctions
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
Constructors
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` firstFunctions
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` first
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` first
Functions
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convert this to a number using the given base. If negative, add "-" as
the first character.
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
the first character. Extend with leading "0" until the length is at
least len
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
as_i128 => as_i32.as_i128
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
does this u8 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
§
exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
§
exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
§
exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create a fraction via unicode fraction slash \u2044 '⁄ '
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
is this u8 an ASCII white-space character?
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
the least significant byte of this integer
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
count the number of 1 bits in the binary representation of this
integer.
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.