☰
u16
u16
u16 -- 16-bit unsigned integer values
Fields
Constructors
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` firstFunctions
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
u16 -- 16-bit unsigned integer values
Fields
Constructors
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` firstFunctions
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
Constructors
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` firstFunctions
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` first
alias of `a.abs`
Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.
Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.
NYI: CLEANUP: Due to #3081, we need `postfix |` as the first operation, should be
`prefix |` first
Functions
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
absolute value
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
this integer as an array of bytes (little endian)
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a decimal number in a string. If negative, add "-" as
the first character.
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a number using the given base. If negative, add "-" as
the first character.
the first character.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convert this to a number using the given base. If negative, add "-" as
the first character. Extend with leading "0" until the length is at
least len
the first character. Extend with leading "0" until the length is at
least len
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create binary representation
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create binary representation with given number of digits.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create decimal representation
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create decimal representation with given number of digits.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
does this u16 fit into an u8?
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
greatest common divisor of this and b
note that this assumes zero to be divisible by any positive integer.
note that this assumes zero to be divisible by any positive integer.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create hexadecimal representation
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create hexadecimal representation with given number of digits.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
find the highest 1 bit in this integer and return integer with
this single bit set or 0 if this is 0.
this single bit set or 0 if this is 0.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
test divisibility by other
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
bitwise and, or and xor operations
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
multiplication, with check for overflow
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
exponentiation for positive exponent
'zero ** zero' is permitted and results in 'one'.
'zero ** zero' is permitted and results in 'one'.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
§exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
§
exponentiation with overflow checking semantics
'zero **? zero' is permitted and results in 'one'.
'zero **? zero' is permitted and results in 'one'.
§exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
§
exponentiation with saturating semantics
'zero **^ zero' is permitted and results in 'one'.
'zero **^ zero' is permitted and results in 'one'.
§exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
§
exponentiation with wrap-around semantics
'zero **° zero' is permitted and results in 'one'.
'zero **° zero' is permitted and results in 'one'.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
§
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
addition, with check for overflow
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
§
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
subtraction, with check for overflow
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
§
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
defining an integer interval from this to other, both inclusive
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
special cases of interval a..b:
a < b: the interval from a to b, both inclusive
a == b: the interval containing only one element, a
a > b: an empty interval
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
division and remainder with check for div-by-zero
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
preconditions used in 'numeric' for basic operations: true if the
operation is permitted for the given values
operation is permitted for the given values
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create a fraction
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
shift operations (unsigned)
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create a fraction via unicode fraction slash \u2044 '⁄ '
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
check if this type of wrap_around is bounded
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
wrap_arounds are assumed to be a bound set by default, so
this returns true unless redefined by an implementation
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create octal representation
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
create octal representation with given number of digits.
count the number of 1 bits in the binary representation of this
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
count the number of 1 bits in the binary representation of this
integer.
integer.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
would addition + other cause an overflow or underflow?
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
would exponentiation 'this ** other' cause an overflow?
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
would multiplication * other cause an overflow or underflow?
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
would subtraction - other cause an overflow or underflow?
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
has_interval.this.max
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
an infinite integer Sequence starting from this up to the maximum value
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
has_interval.this.max
NYI: CLEANUP: Eventually remove `postfix ..` or `postfix ..∞` in favor of the
other one, for now this is here to show that `∞` is a legal symbol in an operator.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
basic operations: 'prefix +' (identity)
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
preconditions for basic operations: true if the operation's result is
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
representable and defined for the given values
default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.