Fuzion Logo
fuzion-lang.dev — The Fuzion Language Portal
»

f32

f32

(val f32)
:
float,java_primitive
 is
[Contains abstract features]
f32 -- 32 bit floating point values


f32 are binary32-numbers as defined in the IEEE 754-2019 standard, see
https://ieeexplore.ieee.org/servlet/opac?punumber=8766227

Fields

Constructors

:
Any
 is
[Inherited from  numeric]
[Contains abstract features]
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`

Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.

Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.

Functions

 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
absolute value
 => 
f32
[Redefinition of  float.acos]
[Contains abstract features]

redefines:

 => 
float.this
[Inherited from  float]
[Contains abstract features]
 => 
f64
[Contains abstract features]
 => 
i32
[Inherited from  float]
[Contains abstract features]
convert a float value to i32 dropping any fraction.
the value must be in the range of i32
 => 
i64
[Redefinition of  float.as_i64]
[Contains abstract features]
conversion

redefines:

 => 
fuzion.java.Java_Object
[Contains abstract features]
 => 
String
[Redefinition of  Any.as_string]
[Contains abstract features]
convert this to a string.

redefines:

 => 
u8
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
this numeric value as an u8
 => 
f32
[Redefinition of  float.asin]
[Contains abstract features]

redefines:

 => 
float.this
[Inherited from  float]
[Contains abstract features]
 => 
f32
[Redefinition of  float.atan]
[Contains abstract features]

redefines:

 => 
float.this
[Inherited from  float]
[Contains abstract features]
 => 
u32
[Contains abstract features]
casting bit representation to u32
 => 
float.this
[Inherited from  float]
[Contains abstract features]
ceiling: the smallest integer greater or equal to this
 => 
f32
[Redefinition of  float.cos]
[Contains abstract features]

redefines:

 => 
f32
[Redefinition of  float.cosh]
[Contains abstract features]

redefines:

 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.

There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
 => 
f32
[Redefinition of  float.exp]
[Contains abstract features]

redefines:

 => 
i32
[Redefinition of  float.exponent]
[Contains abstract features]
the normalized exponent

redefines:

 => 
i32
[Redefinition of  float.exponent_biased]
[Contains abstract features]
the biased exponent
 => 
bool
[Redefinition of  float.fits_in_i64]
[Contains abstract features]
does this `f32` value fit into an `i64`? Used in inherited
precondition of `as_i64`.

redefines:

 => 
bool
[Inherited from  numeric]
[Contains abstract features]
does this numeric value fit into an u8? This is redefined by children
of numeric that support `as_u8`.
 => 
float.this
[Inherited from  float]
[Contains abstract features]
floor: the greatest integer lower or equal to this
 => 
f32
[Redefinition of  float.fract]
[Contains abstract features]
the fraction of the floating point number

redefines:

(other f32)
 => 
f32
[Redefinition of  numeric.infix %]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other f32)
 => 
f32
[Redefinition of  numeric.infix *]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other f32)
 => 
f32
[Redefinition of  numeric.infix **]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other f32)
 => 
f32
[Redefinition of  numeric.infix +]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other f32)
 => 
f32
[Redefinition of  numeric.infix -]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other f32)
 => 
f32
[Redefinition of  numeric.infix /]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
bool
[Redefinition of  float.is_NaN]
[Contains abstract features]

redefines:

 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
bool
[Redefinition of  float.is_sign_bit_set]
[Contains abstract features]
is the sign bit set?
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
f32
[Redefinition of  float.log]
[Contains abstract features]

redefines:

(base float.this)
 => 
float.this
[Inherited from  float]
[Contains abstract features]
logarithm with base `base`
 => 
u64
[Redefinition of  float.mantissa]
[Contains abstract features]
the normalized mantissa

redefines:

 => 
String
[Inherited from  Any]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
basic operations: 'prefix +' (identity)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
preconditions for basic operations: true if the operation's result is
representable and defined for the given values

default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
 => 
f32
[Redefinition of  numeric.prefix -]
[Contains abstract features]
basic operations: 'prefix -' (negation)

redefines:

 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
overflow checking operations
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
saturating operations
 => 
float.this
[Inherited from  float]
[Contains abstract features]
round floating point number
ties to away (0.5 => 1; -0.5 => -1; etc.)

NYI: PERFORMANCE: this could be made faster, see here:
https://cs.opensource.google/go/go/+/refs/tags/go1.18.1:src/math/floor.go;l=79
 => 
i32
[Inherited from  numeric]
[Contains abstract features]
sign function resulting in `-1`/`0`/`+1` depending on whether `numeric.this`
is less than, equal or greater than zero
 => 
f32
[Redefinition of  float.sin]
[Contains abstract features]

redefines:

 => 
f32
[Redefinition of  float.sinh]
[Contains abstract features]

redefines:

 => 
float.this
[Inherited from  float]
[Contains abstract features]
square root alias
 => 
f32
[Redefinition of  float.square_root]
[Contains abstract features]

redefines:

 => 
f32
[Redefinition of  float.tan]
[Contains abstract features]

redefines:

 => 
f32
[Redefinition of  float.tanh]
[Contains abstract features]

redefines:

 => 
bool
[Redefinition of  float.use_scientific_notation]
[Contains abstract features]
true when the absolute value
is smaller than 0.001
or greater than 9_999_999

Type Functions

 => 
String
[Inherited from  Type]
[Contains abstract features]
string representation of this type to be used for debugging.

result has the form "Type of '<name>'", but this might change in the future

redefines:

(y f32, x f32)
 => 
f32
[Redefinition of  float.type.atan2]
[Contains abstract features]
atan(y/x) with a few special cases
see also: https://go.dev/src/math/atan2.go

redefines:

 => 
i32
[Redefinition of  float.type.bytes]
[Contains abstract features]

redefines:

 => 
Type
[Inherited from  Type]
[Contains abstract features]
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.

redefines:

 => 
f32
[Redefinition of  float.type.epsilon]
[Contains abstract features]

redefines:

(a f32, b f32)
 => 
bool
[Contains abstract features]
equality

This provides an equivalence relation in the mathematical
sense and therefore breaks the IEEE semantics. infix = should
be used for IEEE semantics.

The equivalence relation is provided by the usual comparison
of floating-point numbers, with the definition of NaN = NaN.
 => 
i32
[Contains abstract features]
the exponent bias (the zero offset of the exponent)
 => 
i32
[Redefinition of  float.type.exponent_bits]
[Contains abstract features]
number of bits used for exponent
 => 
u32
[Contains abstract features]
mask for the the bits that encode the exponent
(the mask is not shifted to the correct position)
 => 
interval i32
[Inherited from  float]
[Contains abstract features]
(val i64)
 => 
f32
[Redefinition of  float.type.from_i64]
[Contains abstract features]
(v u32)
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the value corresponding to v in whatever integer implementation we have,
maximum in case of overflow
(a f32)
 => 
u64
[Contains abstract features]
create hash code from this number

special handling for floats:
although -0.0 and 0.0 are different in bit representation,
they are considered equal by both type.equality and IEEE
standard, hence they should have the same hash.
all NaNs are considered equal by type.equality (but not
the IEEE standard), so the hash of any NaN is the hash of
the "canonical" NaN.
 => 
float.this.type
[Inherited from  float]
[Contains abstract features]
infinity
(T 
type
)
 => 
bool
[Inherited from  Type]
[Contains abstract features]
Is this type assignable to a type parameter with constraint `T`?

The result of this is a compile-time constant that can be used to specialize
code for a particular type.

is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false

it is most useful in conjunction preconditions or `if` statements as in

pair(a,b T) is
same
pre T : property.equatable
=>
a = b

or

val(n T) is

# check if T is numeric, if so
# return true if n > zero,
# return nil if T is not numeric
#
more_than_zero option bool =>
if T : numeric then
n > T.zero
else
nil
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(a f32, b f32)
 => 
bool
[Contains abstract features]
total order

This provides a total order in the mathematical sense and
therefore breaks the IEEE semantics. infix <= should be
used for IEEE semantics.

The total order is provided by the usual comparison of
floating-point numbers, with the definition that NaN <= x,
for any x (including x = NaN).
 => 
i32
[Inherited from  float]
[Contains abstract features]
the amount of bits that are used to encode the mantissa
 => 
u32
[Contains abstract features]
mask for the the bits that encode the mantissa
 => 
f32
[Redefinition of  float.type.max]
[Contains abstract features]

redefines:

 => 
i32
[Redefinition of  float.type.max_exp]
[Contains abstract features]

redefines:

 => 
i32
[Redefinition of  float.type.min_exp]
[Contains abstract features]

redefines:

 => 
f32
[Redefinition of  float.type.min_positive]
[Contains abstract features]
 => 
String
[Inherited from  Type]
[Contains abstract features]
name of this type, including type parameters, e.g. 'option (list i32)'.
 => 
float.this.type
[Inherited from  float]
[Contains abstract features]
not a number
 => 
float.this.type
[Inherited from  float]
[Contains abstract features]
 => 
f32
[Redefinition of  numeric.type.one]
[Contains abstract features]
identity element for 'infix *'

redefines:

 => 
float.this.type
[Inherited from  float]
[Contains abstract features]
 => 
String
[Inherited from  Type]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.

NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913

redefines:

 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix * operation. Will create product of all elements
it is applied to.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix *^ operation. Will create product of all elements
it is applied to, stopping at max/min value in case of overflow.
 => 
float.this.type
[Inherited from  float]
[Contains abstract features]
non signaling not a number
 => 
i32
[Redefinition of  float.type.significand_bits]
[Contains abstract features]
number of bits used for mantissa,
including leading '1' that is not actually stored
 => 
i32
[Inherited from  float]
[Contains abstract features]
number of bits required to store this value
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix + operation. Will create sum of all elements it
is applied to.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix +^ operation. Will create sum of all elements it
is applied to, stopping at max/min value in case of overflow.
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the constant '10' in whatever integer implementation we have, maximum in case of overflow
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the constant '2' in whatever integer implementation we have, maximum in case of overflow
 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get a type as a value.

This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.

`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
 => 
f32
[Redefinition of  numeric.type.zero]
[Contains abstract features]
identity element for 'infix +'

redefines:

 => 
f32
[Redefinition of  float.type.π]
[Contains abstract features]

redefines:

 => 
f32
[Redefinition of  float.type.ℇ]
[Contains abstract features]

redefines:

0.094dev (2025-06-18 15:08:51 GIT hash 89cffc23ae669b0898a5564fefbf793fcb8e5ca7 built by fridi@fzen)