Fuzion Logo
fuzion-lang.dev — The Fuzion Language Portal
»

complex

num.complex

(C 
type
:
numeric, real C, imag C)
:
numeric
 is
[Contains abstract features]
complex -- complex numbers based on arbitrary numeric type

complex provides complex numbers based on a numeric type (e.g. f64, i32).
A complex number consists of a real and an imaginary part.

Type Parameters

Fields

real
 C
imag
 C

Constructors

:
Any
 is
[Inherited from  numeric]
[Contains abstract features]
absolute value using `|a|` built from a `prefix |` and `postfix |` as an operator
alias of `a.abs`

Due to the low precedence of `|`, this works also on expressions like `|a-b|`, even
with spaces `| a-b |`, `|a - b|`, `| a-b|` or `|a-b |`.

Nesting, however, does not work, e.g, `| - |a| |`, this requires parentheses `|(- |a|)|`.

Functions

 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
absolute value
 => 
num.complex.C
[Contains abstract features]
 => 
String
[Redefinition of  Any.as_string]
[Contains abstract features]

redefines:

 => 
u8
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
this numeric value as an u8
 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.

There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
does this numeric value fit into an u8? This is redefined by children
of numeric that support `as_u8`.
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
basic operations: 'infix %' (division remainder)
(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
basic operations: 'infix **' (exponentiation)
(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Abstract feature]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
(other numeric.this)
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]

redefines:

(other numeric.this)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
String
[Inherited from  Any]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
 => 
num.this.complex num.complex.C
[Redefinition of  numeric.prefix +]
[Contains abstract features]
basic operations

redefines:

 => 
bool
[Inherited from  numeric]
[Contains abstract features]
preconditions for basic operations: true if the operation's result is
representable and defined for the given values

default implementations all return `true` such that children have to
redefine these only for partial operations such as those resulting in
an overflow or that are undefined like a division by zero for most
types.
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
basic operations: 'prefix -' (negation)
 => 
bool
[Inherited from  numeric]
[Contains abstract features]
 => 
option numeric.this
[Inherited from  numeric]
[Contains abstract features]
overflow checking operations
 => 
numeric.this
[Inherited from  numeric]
[Contains abstract features]
saturating operations
 => 
i32
[Inherited from  numeric]
[Contains abstract features]
sign function resulting in `-1`/`0`/`+1` depending on whether `numeric.this`
is less than, equal or greater than zero

Type Functions

 => 
String
[Inherited from  Type]
[Contains abstract features]
string representation of this type to be used for debugging.

result has the form "Type of '<name>'", but this might change in the future

redefines:

 => 
Type
[Inherited from  Type]
[Contains abstract features]
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.

redefines:

equality
(v u32)
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the value corresponding to v in whatever integer implementation we have,
maximum in case of overflow
(a property.hashable.this.type)
 => 
u64
[Inherited from  hashable]
[Abstract feature]
[Contains abstract features]
create hash code for this instance

This should satisfy the following condition:

(T.equality a b) : (T.hash_code a = T.hash_code b)
 => 
num.complex num.complex.type.C
[Contains abstract features]
the imaginary unit
(T 
type
)
 => 
bool
[Inherited from  Type]
[Contains abstract features]
Is this type assignable to a type parameter with constraint `T`?

The result of this is a compile-time constant that can be used to specialize
code for a particular type.

is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false

it is most useful in conjunction preconditions or `if` statements as in

pair(a,b T) is
same
pre T : property.equatable
=>
a = b

or

val(n T) is

# check if T is numeric, if so
# return true if n > zero,
# return nil if T is not numeric
#
more_than_zero option bool =>
if T : numeric then
n > T.zero
else
nil
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
total order ignoring imag
 => 
String
[Inherited from  Type]
[Contains abstract features]
name of this type, including type parameters, e.g. 'option (list i32)'.
 => 
num.complex num.complex.type.C
[Redefinition of  numeric.type.one]
[Contains abstract features]
identity element for 'infix *'

redefines:

 => 
String
[Inherited from  Type]
[Contains abstract features]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.

NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913

redefines:

 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix * operation. Will create product of all elements
it is applied to.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix *^ operation. Will create product of all elements
it is applied to, stopping at max/min value in case of overflow.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix + operation. Will create sum of all elements it
is applied to.
 => 
Monoid numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
monoid of numeric with infix +^ operation. Will create sum of all elements it
is applied to, stopping at max/min value in case of overflow.
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the constant '10' in whatever integer implementation we have, maximum in case of overflow
 => 
numeric.this.type
[Inherited from  numeric]
[Contains abstract features]
the constant '2' in whatever integer implementation we have, maximum in case of overflow
 => 
Type
[Inherited from  Any]
[Contains abstract features]
Get a type as a value.

This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.

`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
 => 
num.complex num.complex.type.C
[Redefinition of  numeric.type.zero]
[Contains abstract features]
identity element for 'infix +'

redefines:

0.094dev (2025-06-18 15:08:51 GIT hash 89cffc23ae669b0898a5564fefbf793fcb8e5ca7 built by fridi@fzen)