☰
process
os.process
type denoting a started process
Functions
create a String from this instance. Unless redefined, `a.as_string` will
create `"instance[T]"` where `T` is the dynamic type of `a`
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
pipe this processes output to new process
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
wait for this process
install buffered reader for reading from stdout of process
and run `f`.
install buffered reader for reading from stdout of process
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
type denoting a started process
Functions
create a String from this instance. Unless redefined, `a.as_string` will
create `"instance[T]"` where `T` is the dynamic type of `a`
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
pipe this processes output to new process
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
wait for this process
install buffered reader for reading from stdout of process
and run `f`.
install buffered reader for reading from stdout of process
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
create a String from this instance. Unless redefined, `a.as_string` will
create `"instance[T]"` where `T` is the dynamic type of `a`
create `"instance[T]"` where `T` is the dynamic type of `a`
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
pipe this processes output to new process
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
wait for this process
install buffered reader for reading from stdout of process
and run `f`.
install buffered reader for reading from stdout of process
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
pipe this processes output to new process
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
wait for this process
install buffered reader for reading from stdout of process
and run `f`.
install buffered reader for reading from stdout of process
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
pipe this processes output to new process
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
wait for this process
install buffered reader for reading from stdout of process
and run `f`.
install buffered reader for reading from stdout of process
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
wait for this process
install buffered reader for reading from stdout of process
and run `f`.
install buffered reader for reading from stdout of process
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
wait for this process
install buffered reader for reading from stdout of process
and run `f`.
install buffered reader for reading from stdout of process
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
install buffered reader for reading from stdout of process
and run `f`.
and run `f`.
install buffered reader for reading from stdout of process
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
install buffered reader for reading from stdout of process
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
install buffered reader for reading from stdout of process
and run `f`.
and run `f`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
write bytes to stdin of child process
write string to stdin of child processType Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
write string to stdin of child process
Type Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.equatable.type.equality]equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
§
(a os.process.this.type, b os.process.this.type)
=>
bool [Redefinition of property.equatable.type.equality]
equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
additional restrictions on when equality is permitted,
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
e.g., `option T` might require `T : property.equatable`.
to implement `equality`
§(a os.process.this.type, b os.process.this.type) => bool [Redefinition of property.partially_orderable.type.lteq]lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
§
(a os.process.this.type, b os.process.this.type)
=>
bool [Redefinition of property.partially_orderable.type.lteq]
lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
start a process with name and no arguments
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
start a process with name and arguments
§start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
§
start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.