process
os.process
type denoting a started process
Fields
Functions
create a String from this instance. Unless redefined, `a.as_string` will
create `"instance[T]"` where `T` is the dynamic type of `a`
create `"instance[T]"` where `T` is the dynamic type of `a`
close standard input of this process
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
pipe this processes output to new process
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
send signal to process
wait for this process
install buffered reader for reading from stdout of process
and run `f`.
and run `f`.
install buffered reader for reading from stdout of process
and run `f`.
and run `f`.
write bytes to stdin of child process
write string to stdin of child process
Type Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
(a os.process.this.type, b os.process.this.type) => bool[Redefinition of property.orderable.type.equality]¶
(a os.process.this.type, b os.process.this.type)
=>
bool[Redefinition of property.orderable.type.equality]
¶equality
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
it is most useful in conjunction with preconditions or `if` statements as in
or
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
it is most useful in conjunction with preconditions or `if` statements as in
or
(a os.process.this.type, b os.process.this.type) => bool[Redefinition of property.partially_orderable.type.lteq]¶
(a os.process.this.type, b os.process.this.type)
=>
bool[Redefinition of property.partially_orderable.type.lteq]
¶lteq
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
start a process with name and no arguments
start a process with name and arguments
start a process with name, arguments and environment variables
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
0.095dev (2025-08-15 12:02:22 GIT hash 301b5b75e77076d091b38f555473f9f0e31e5b5c built by fridi@fzen)