frequency
time.frequency
Functions
this frequency represented as a duration. Note that the duration might
be inaccurate, it will be truncated to full nanoseconds.
be inaccurate, it will be truncated to full nanoseconds.
create a string representation of this frequency
dynamic_apply -- apply `f.call` to `Any.this`'s dynamic type and value
This can be used to perform operation on values depending on their dynamic
type.
Here is an example that takes a `Sequence Any` that may contain boxed values
of types `i32` and `f64`. We can now write a feature `get_f64` that extracts
these values converted to `f64` and build a function `sum` that sums them up
as follows:
NYI: IMPROVEMENT: #5892: If this is fixed, we could write
This can be used to perform operation on values depending on their dynamic
type.
Here is an example that takes a `Sequence Any` that may contain boxed values
of types `i32` and `f64`. We can now write a feature `get_f64` that extracts
these values converted to `f64` and build a function `sum` that sums them up
as follows:
NYI: IMPROVEMENT: #5892: If this is fixed, we could write
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
this frequency multiplied by factor n
NYI: UNDER DEVELOPMENT: #5801: rename as `divide_by` or similar since `infix *` is inappropriate for a frequency.
NYI: UNDER DEVELOPMENT: #5801: rename as `divide_by` or similar since `infix *` is inappropriate for a frequency.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
Type Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
it is most useful in conjunction with preconditions or `if` statements as in
or
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
it is most useful in conjunction with preconditions or `if` statements as in
or
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
0.095dev (2025-09-09 14:29:31 GIT hash 98644f8f651c2101a0730cfe31c5807993b7603b built by fridi@fzen)
This provices abstract features that define a period of time and that
permit multiplications with large integers avoiding drift.
An example is a frequency of 60Hz that can be specified as
This is different to `duration.s 1 / 60` since `duration` can only be represented as
`16666667 ns`, resulting in a drift of 1/3ns per period. This would result in a drift
of 17ms (a whole period) in 10 days. Such inaccuracy can result in catastrophic failure, see
(The Patriot Missile Failure)[https://www-users.cse.umn.edu/~arnold/disasters/patriot.html].