Fuzion Logo
fuzion-lang.dev — The Fuzion Language Portal
JavaScript seems to be disabled. Functionality is limited.

variadic

container.variadic

(E 
type
)
:
typed_applicator E
 is
[Contains abstract features]
variadic -- convenience feature to fold the elements of a `Typed_Sequence`.

ex:


NYI: CLEANUP: This is somewhat redundant with `typed_fold`, we should decide on
only one of these variant, maybe once lambdas for `typed_applicator` are
supported #5892 and we can compare the usability.

Type Parameters

Functions

(T 
type
, e E, v T)
 => 
E
[Inherited from  typed_applicator]
[Abstract feature]
Apply an operation on a value v of type T using the cumulative value
`e`, and type type / value pair `T`/`v`, create a new value of type
`B` and return it

ex:

to concatenate the String representation of all values, use

 => 
String
[Inherited from  Any]
create a String from this instance. Unless redefined, `a.as_string` will
create `"instance[T]"` where `T` is the dynamic type of `a`
(R 
type
, F 
type
: Typed_Function R, f F)
 => 
R
[Inherited from  Any]
dynamic_apply -- apply `f.call` to `Any.this`'s dynamic type and value

This can be used to perform operation on values depending on their dynamic
type.

Here is an example that takes a `Sequence Any` that may contain boxed values
of types `i32` and `f64`. We can now write a feature `get_f64` that extracts
these values converted to `f64` and build a function `sum` that sums them up
as follows:


NYI: IMPROVEMENT: #5892: If this is fixed, we could write

 => 
Type
[Inherited from  Any]
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.

There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
 => 
String
[Inherited from  Any]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
the result of the fold

Type Functions

 => 
String
[Inherited from  Type]
string representation of this type to be used for debugging.

result has the form "Type of '<name>'", but this might change in the future

redefines:

 => 
Type
[Inherited from  Type]
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.

redefines:

(T 
type
)
 => 
bool
[Inherited from  Type]
Is this type assignable to a type parameter with constraint `T`?

The result of this is a compile-time constant that can be used to specialize
code for a particular type.


it is most useful in conjunction with preconditions or `if` statements as in


or

 => 
String
[Inherited from  Type]
name of this type, including type parameters, e.g. 'option (list i32)'.
 => 
String
[Inherited from  Type]
convenience prefix operator to create a string from a value.

This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.

NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913

redefines:

 => 
Type
[Inherited from  Any]
Get a type as a value.

This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.

`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
0.095dev (2025-09-09 14:29:31 GIT hash 98644f8f651c2101a0730cfe31c5807993b7603b built by fridi@fzen)