☰
next
oneway_monad_mode.val.next
Functions
create a String from this instance. Unless redefined, `a.as_string` will
create `"instance[T]"` where `T` is the dynamic type of `a`
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.Type Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
Functions
create a String from this instance. Unless redefined, `a.as_string` will
create `"instance[T]"` where `T` is the dynamic type of `a`
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.Type Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
create a String from this instance. Unless redefined, `a.as_string` will
create `"instance[T]"` where `T` is the dynamic type of `a`
create `"instance[T]"` where `T` is the dynamic type of `a`
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.Type Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.Type Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
Type Functions
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
string representation of this type to be used for debugging.
result has the form "Type of '<name>'", but this might change in the future
result has the form "Type of '<name>'", but this might change in the future
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
There is no dynamic type of a type instance since this would result in an
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
endless hierarchy of types, so dynamic_type is redefined to just return
Type.type here.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
Is this type assignable to a type parameter with constraint `T`?
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
The result of this is a compile-time constant that can be used to specialize
code for a particular type.
is_of_integer_type(n T : numeric) => T : integer
say (is_of_integer_type 1234) # true
say (is_of_integer_type 3.14) # false
it is most useful in conjunction preconditions or `if` statements as in
pair(a,b T) is
=>
or
val(n T) is
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
NYI: Redefinition allows the type feature to be distinguished from its normal counterpart, see #3913
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
This returns either `plain` for a plain monad, or `repl` for a an
instated effect.