u16.fz
# This file is part of the Fuzion language implementation.
#
# The Fuzion language implementation is free software: you can redistribute it
# and/or modify it under the terms of the GNU General Public License as published
# by the Free Software Foundation, version 3 of the License.
#
# The Fuzion language implementation is distributed in the hope that it will be
# useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License along with The
# Fuzion language implementation. If not, see <https://www.gnu.org/licenses/>.
# -----------------------------------------------------------------------
#
# Tokiwa Software GmbH, Germany
#
# Source code of Fuzion standard library feature u16
#
# Author: Fridtjof Siebert (siebert@tokiwa.software)
#
# -----------------------------------------------------------------------
# u16 -- 16-bit unsigned integer values
#
public u16(public val u16) : num.wrap_around, has_interval is
public thiz => u16.this.val
# overflow checking
# would negation -thiz cause an overflow?
redef wrapped_on_neg => !is_zero
# would addition thiz + other cause an overflow or underflow?
public fixed overflow_on_add (other u16) => u16.max -° thiz < other
public fixed underflow_on_add(other u16) => false
# would subtraction thiz - other cause an overflow or underflow?
public fixed overflow_on_sub (other u16) => false
public fixed underflow_on_sub(other u16) => thiz < other
# would multiplication thiz * other cause an overflow or underflow?
public fixed overflow_on_mul (other u16) => as_i32 *° other.as_i32 > u16.max.as_i32
public fixed underflow_on_mul(other u16) => false
# neg, add, sub, mul with wrap-around semantics
public fixed prefix -° u16 => intrinsic
public fixed infix +° (other u16) u16 => intrinsic
public fixed infix -° (other u16) u16 => intrinsic
public fixed infix *° (other u16) u16 => intrinsic
# division and remainder with check for div-by-zero
public fixed infix / (other u16)
pre
safety: other != 0
=> div other
public fixed infix % (other u16)
pre
safety: other != 0
=> mod other
# private division and remainder with crash in case of div-by-zero
private div (other u16) u16 => intrinsic
private mod (other u16) u16 => intrinsic
# bitwise and, or and xor operations
public fixed infix & (other u16) u16 => intrinsic
public fixed infix | (other u16) u16 => intrinsic
public fixed infix ^ (other u16) u16 => intrinsic
# shift operations (unsigned)
public fixed infix >> (other u16) u16 => intrinsic
public fixed infix << (other u16) u16 => intrinsic
public as_i8 i8
pre
debug: thiz ≤ i8.max.as_u16
=>
cast_to_i16.as_i8
public as_i16 i16
pre
debug: thiz ≤ i16.max.as_u16
=>
cast_to_i16
public as_i32 i32 => intrinsic
public as_i64 => thiz.as_i32.as_i64
# as_i128 => thiz.as_i32.as_i128
public as_u8 u8
pre
thiz ≤ u8.max.as_u16
=>
low8bits
public as_u32 => thiz.as_i32.as_u32
public as_u64 => thiz.as_i32.as_u64
public as_u128 => thiz.as_i32.as_u128
public as_int => int as_i64
public low8bits u8 => intrinsic
public cast_to_i16 i16 => intrinsic
# create hash code from this number
public type.hash_code(a u16.this) u64 =>
hash a.as_u64
# find the highest 1 bit in this integer and return integer with
# this single bit set or 0 if this is 0.
#
public highest_one_bit u16 =>
// NYI: should be possible to reuse v, s names
(v0, s0) := (val, u16 0 )
(v1, s1) := if (v0 < (u16 0x100)) (v0, s0) else (v0 >> 8, s0 + 8)
(v2, s2) := if (v1 < (u16 0x10)) (v1, s1) else (v1 >> 4, s1 + 4)
(v3, s3) := if (v2 < (u16 4)) (v2, s2) else (v2 >> 2, s2 + 2)
(v4, s4) := if (v3 < (u16 2)) (v3, s3) else (v3 >> 1, s3 + 1)
v4 << s4
# count the number of trailing zeros in this integer.
#
public trailing_zeros i32 =>
// NYI: should be possible to reuse v, s names
(v0, s0) := (val, 0)
(v1, s1) := if (v0 & 0xff) != u16 0 then (v0, s0) else (v0 >> 8, s0 + 8)
(v2, s2) := if (v1 & 0xf) != u16 0 then (v1, s1) else (v1 >> 4, s1 + 4)
(v3, s3) := if (v2 & 3) != u16 0 then (v2, s2) else (v2 >> 2, s2 + 2)
(v4, s4) := if (v3 & 1) != u16 0 then (v3, s3) else (v3 >> 1, s3 + 1)
s5 := if (v4 & 1) != u16 0 then s4 else 16
s5
# count the number of 1 bits in the binary representation of this
# integer.
#
public ones_count i32 =>
v := val.as_i32
m := v & 0xaaaa; v := v - m + (m >> 1)
m := v & 0xcccc; v := v - m + (m >> 2)
m := v & 0xf0f0; v := v - m + (m >> 4)
(v + (v >> 8)) & 0x1f
# -----------------------------------------------------------------------
#
# type features:
# identity element for 'infix +'
#
fixed type.zero u16 => 0
# identity element for 'infix *'
#
fixed type.one u16 => 1
# equality
#
fixed type.equality(a, b u16) bool => intrinsic_constructor
# total order
#
fixed type.lteq(a, b u16) bool => intrinsic_constructor
# returns the number in whose bit representation all bits are ones
fixed redef type.all_bits_set => u16 0xffff
# minimum
#
public fixed type.min => u16 0
# maximum
#
public fixed type.max => u16 0xffff
last changed: 2024-03-07