
The Fuzion Intermediate Representation
An IR for static analysis of safety-critical systems

Fridtjof Siebert
siebert@tokiwa.software
Tokiwa Software GmbH
Karlsruhe, Germany

Michael Lill
michael.lill@tokiwa.software

Tokiwa Software GmbH
Karlsruhe, Germany

Abstract
Fuzion is a new language targeting safety-critical systems
by building on few but powerful concepts and enabling
static analysis of applications to verify their correctness.
The Fuzion Intermediate Representation (FUIR) plays a key
role in providing a basis for static analysis tools as well as
interpreters and code generators that produce runnable pro-
grams.

FUIR has a number of aspects that are different from most
other intermediate representations: Code is grouped into
Fuzion features that are a common abstraction for functions,
classes, types, etc. There are only 10 commands used in
FUIR, calls to intrinsic features are used for operations not
present as explicit commands. There is no support for loop
or conditional jumps, recursion is used instead. The usual
distinction between stack frames and heap instances does
not exist in the FUIR.

This work-in-progress paper will give a quick overview of
the Fuzion language and explain the aspects of the FUIR in
more detail before presenting the impact it has on the tools
processing the FUIR code.

CCS Concepts: • Software and its engineering→ Com-
pilers; Software verification; Formal software verifica-
tion.

Keywords: Languages, Intermediate Language, Static Anal-
ysis, Safety-Critical Systems
ACM Reference Format:
Fridtjof Siebert and Michael Lill. . The Fuzion Intermediate Rep-
resentation: An IR for static analysis of safety-critical systems. In
Proceedings of (VMIL’24). ACM, New York, NY, USA, 6 pages.

1 Introduction
Fuzion is a work-in-progress project to design a new high-
level language and toolchain targeting safety critical applica-
tions [14]. It provides a novel way that combines aspects of
object-oriented and functional programming paradigms in
a coherent and simple way. Fuzion is pure in the sense that
no public routine will have any non-functional side-effects
unless explicitly declared.
The Fuzion Intermediate Representation (FUIR) is being

designed not only as a source language for execution and

VMIL’24, October 20, 2024, Pasadena, CA, USA
2024.

code generation, but also as the basis for static analysis tools
to statically analyze the code to verify different correctness
aspects like the absence of runtime faults, the absence of data
flow that could result in a leak of sensitive data or resource
constraints (worst-case execution time or memory usage)
during execution.

1.1 Goals for the IR Design
The goals for FUIR are derived from the intended application
for the development of safety-critical systems in very differ-
ent domains such as industrial control, automotive, avionic,
medical devices, critical infrastructure, etc.

The problems to be solved by the IR are:
1. provide a static, monomorphized representation of a

whole Fuzion application.
2. serve as input for code generator back ends targeting

different languages such as JVM bytecode, LLVM [6],
C-code, etc.

3. serve as input for direct code execution by virtual
machines using interpretation or JIT-compilation.

4. provide a basis for static analysis for application cor-
rectness to, e.g.,
• proof the absence of runtime errors like failed pre
or post-condititions [11] or assertion checks,

• verify timing such as finding worst-case execution
times,

• verify resource limits such as heap or stack memory
usage,

• integratewith formal proof assistants like Isabelle [7].
5. permit static analysis to enable local andwhole-program

optimizations
6. enable simple, certified code generators to facilitate

safety certification of generated binary code, e.g., for
airborne systems [1].

These goals result in the general requirement of having a
simple IR that permits generic abstract interpreters to be built
that form the basis for different static analysis, verification
and code generation tools.

1.2 Organization of this Paper
Section 2 will give a dense overview of the Fuzion language,
which will help understand some of the design decisions
for the intermediate representation before section 3 gives
an overview of the Fuzion toolchain using the intermediate

https://orcid.org/0003-1674-2976

VMIL’24, October 20, 2024, Pasadena, CA, USA Fridtjof Siebert and Michael Lill

representation presented in section 4. The implementation
of tools currently using the IR is explained in 5 before some
related work in section 6 and our conclusions in section 7
outline future work.

2 Fuzion Language Introduction
This section gives a condensed and recursive overview of
the Fuzion language and an introduction to its terminology,
a tutorial is available online [17].

2.1 Building Block: Feature
The building blocks of Fuzion applications are feature declara-
tions. There are different kinds of features, the most common
kinds are field and routine. A field is an immutable variable
of a statically fixed type that is initialized with a value calcu-
lated from an expression. A routine is a callable feature with
formal arguments and code given as an expression. A routine
may be one of two kinds: a function that results in the value
produced by evaluation of its expression or a constructor that
defines a product type consisting of its inner fields. The ar-
guments of a routine themselves are features, they may be
type parameters or fields.

2.2 Types
Fuzion’s types fall into two categories, product types that
are defined by a constructor and sum types that are defined
by choice features. A choice feature defines a tagged union
type (choice type) of its type parameters, complementary to
a constructor feature that defines a product type of its inner
fields. Unlike constructor features, a choice feature may not
be called in an expression. An instance of a choice type is
created by an assignment of a value whose type is one of the
choice’s type parameters to a field of the choice type.

2.3 Expressions
An expression is code that can be evaluated to produce a result
value of the expression’s type. Any code that is executed
must therefore produce a result value when it returns, but
there are types like unit for values that do not contain any
information or void to indicate that the expression does not
return1.

The most important expression is a feature call to a routine.
On a call, actual values are assigned to the routine’s formal
arguments: For arguments that are type parameters, the actual
valuesmust be types, while for argument fields corresponding
expressions must be given. The result of a call to a function
is the value of the function’s expression, while the result of
a call to a constructor is the instance of the product type
defined by that constructor with arguments set to the actual
types and values and inner fields initialized to their initial
values.

1e.g., as the result type of a call to panic that aborts with an error

The only expression that permits conditional code is a
match that takes an expression that evaluates to an instance
of a choice type. Depending on the original type stored in the
choice, evaluation proceeds with one of several expressions.
Finally, Fuzion expressions allow nested declarations de-

scribed in the next sub-section:

2.4 Nested Features
A feature declaration itself is a Fuzion expression that re-
sults in a unit type result value. This permits fields to be
nested within routines, but also permits the nesting of rou-
tines. An inner routine may access features declared in all of
its outer routines. On a call to a routine, a reference to the
outer instance is passed as an implicit argument.

2.5 Inheritance and Dynamic Binding
Constructors may inherit from other constructor features by
adding calls to these parents in the declaration. As a result,
the child inherits the parents’ inner features, which the child
may redefine.

Since Fuzion uses value semantics, using inheritance and
redefinition does not require dynamic binding. However, a
constructor may be defined as a reference type. If this is the
case for the parent, the child becomes assignable to fields of
the parent type and dynamic binding will be used.

2.6 Algebraic Effects
Fuzion routines are pure, i.e., their result depends only on
the values of the actual arguments including the implicit
outer instance. The only means to perform state changes
or to interact with the outside world is via algebraic effects.
These are features that inherit from a base feature effect
and add effect operations as inner features. Effects can be
instated to run code that can access the effect’s operations
in its environment. Static analysis is used to verify that all
effects required for certain code are actually instated in the
code’s environment.

2.7 Syntactic Sugar
Fuzion uses extensive syntactic sugar to provide a more
human-readable syntax for common code patterns.

Conditionals. of the form if -then-else are internally han-
dled like match expressions. This is possible since type bool
in Fuzion’s base library is defined as a choice type of unit
types FALSE and TRUE.

Loops. are supported via a powerful syntax that is, inter-
nally, mapped to tail-recursive calls2 and match expressions.

Type inference. is used extensively in the front end such
that —even though Fuzion is statically typed— types can be
omitted in most cases.
2that will be optimized by the backends

The Fuzion Intermediate Representation VMIL’24, October 20, 2024, Pasadena, CA, USA

2.8 Information Hiding
Visibility of features and types can be restricted as private
(same source file, default), module (same module) and public.

2.9 Code Example
Here is a small example that declares a feature example that
requires the io.out effect. As inner features it declares a prod-
uct type point that combines two values of type f64 and has
an inner function d that calculates the distance to the origin.
A polymorphic function add is declared that adds three

numeric values whose type is given by a type parameter T.
example ! i o . out i s

po i n t (x , y f 3 2) i s
d => f 3 2 . s q r t x ∗ x+y ∗ y

p := po i n t 3 4
say p . d

add (a , b , c T : numeric) => a + b + c
say (add 3 4 5)
say (add 3 . 1 4 1 2 . 7 1 8 1 . 1 4 1)

3 Fuzion Toolchain
The Fuzion toolchain (Fig 1) starts by compiling a set of
Fuzion source files *.fz into a Fuzion module name.fum. Mod-
ules may depend on other modules and compilation is done
against pre-compiled modules. The front end phase checks
that the source code respects the language validity rules that
include type checks, visibility rules, etc.

.fz

Front
end

Middle
end

.fuir

JVM

backend
.class

.c

Analyzer

.fum

C
backend

Inter-
preter

JVM

.fuir

Figure 1. Fuzion toolchain and intermediate data.

Module files have unique version numbers, any change
or recompilation of one module requires recompilation of
all modules that depend on that module. There is hence no
need for mechanisms to detect incompatible changes at link
or load time as in other languages3.

The middle end then builds an application name.fuir from
a main module that defines a main feature plus all the mod-
ules the main module depends on. The middle end performs
3Java produces an IncompatibleClassChangeError in some cases, C could fail
during linking or crash at runtime in this case.

monomorphization, i.e., all type parameters are replaced by
actual types, features called with different type parameters
are specialized for all combinations of type parameters that
are used in the application.
Consequently, the intermediate code used for the appli-

cation is fairly simple, all types except runtime types of
reference values are known. Whole program static analyzers
can now process the application that is represented using
the Fuzion intermediate representation.

Finally, the intermediate representation is used by one of
the Fuzion backends to produce executable code. Currently,
three backends are implemented: a JVM bytecode generator,
one back end that creates C source code to be processed
by clang/llvm or other C toolchains and an interpreter that
directly executes the intermediate code.

4 Intermediate Representation
The exact specification of the FUIR format is work-in-pro-
gress. In many parts, it will be similar to the Fuzion module
file format that is specified online [18]. This section gives an
overview of the general features of the format followed by a
description of the contents.

4.1 Binary format using offsets
Both, the Fuzion Module File Format and the Fuzion Interme-
diate File Format are binary formats. For references between
files and within one file, byte offsets are used. This permits ef-
ficient accesses between files, but it requires strict versioning
of files. A modification in any module file requires recreation
of all files that directly or indirectly depend upon that file.

This has two important consequences: Names of features
or types are effectively irrelevant and present only for hu-
man interaction purposes. Furthermore, modifications can-
not result in runtime problems like Java’s IncompatibleClass-
ChangeError [8] since such modifications are strictly forbid-
den without rebuilding of all dependent files. File hashes are
used to enforce this.

Another aspect that is taken into account when designing
the file format is that related data is kept close together. In
particular, inner declarations like the argument fields of a
routine are stored together while information that might
not be needed at all in the common case like the source
code context to be used in error messages is kept towards
the end of the files. The intend is tp speed up processing
by permitting fast memory-mapping and direct use of the
important parts of a file while avoiding to even load parts
that end up not being used at all.

4.2 IR contents
The Fuzion Intermediate Representation (FUIR) is a collec-
tion of monomorphic features created by a data-flow analysis
over a Fuzion application that detects all runtime types that
could be used by the application. Unlike Fuzion module files

VMIL’24, October 20, 2024, Pasadena, CA, USA Fridtjof Siebert and Michael Lill

that define features that are open to be used with different
type parameters and that permit new children to inherit from
their features, the FUIR is fairly static: All types and children
are known and fixed.

4.2.1 Monomorphic Features. Features fall in one of the
following categories

• routine — a feature containing executable code. A rou-
tine may define inner features, including its argument
fields. Routines define a product type of the types of
its direct inner fields, a call to a routine allocates an
instance of this type. In case the routine is a function,
the fields include an implicit result field. Otherwise,
the routine is a constructor whose result is the instance
of its type. A flag indicates if the type of a routine is a
value type or a ref type.

• abstract — a feature similar to a routine but without
executable code that cannot be called at runtime.

• field — inner features of routines or abstract features
can be fields. Fields have a result type.

• choice — a feature containing no fields nor executable
code that defines a tagged sum type of a fixed number
of choice types. A choice may contain inner feature
declarations except for direct inner fields.

• intrinsic — a function with arguments and a result type
that does not contain explicit code, but implicit code
created by the execution engine.

• native — a function that provides a way to call foreign
language functions implemented in other languages.

4.2.2 Types. The Fuzion intermediate representation does
not have an explicit notion of a type. Instead, types are de-
fined by features of the routine and choice categories. When
types are referenced in the FUIR, a reference to the defining
feature is used, there is no explicit representation of a type.

4.2.3 Fields. Fields may store calculated values within the
instance of a routine. Even though the Fuzion language does
not permit mutable fields, the intermediate language does
have commands to assign a value to a field. Static analysis is
used to ensure that no call is made to read a field that has
not been initialized and that fields that were initialized will
not be overwritten.
Fuzion defines special fields for routine argument values

and for the result value returned by a function.
Furthermore, whenever code to access instances of outer

features might be required, an implicit outer ref field point-
ing to the instance of an outer routine or choice will be
created automatically and initialized implicitly on a call with
a reference to the target value of that call.

4.2.4 Code. Routines may contain code that is executed
on a call to that routine. The code consists of a very small
set of bytecode commands.

To represent executable code, the FUIR uses a stack ma-
chine with only ten different commands. The commands
are

Current: Obtain a reference to the current instance of
the routine feature we are executing. This instance is a value
of the product type defined by the fields of this routine. It
permits access to the inner fields of that routine. A reference
to the current value will be stored on the top of the stack
after this command.

Call: A call to a routine. Calls are performed on a target
value given a fixed list of argument values.

On a call, a reference to the target value together with
a fixed number of argument values will be taken from the
stack and assigned to the outer ref field and the argument
fields of the called feature.
In case the target value is a ref type, the call may use

dynamic binding, the called feature will be determined dy-
namically depending on the target value’s type.

Assign: Will assign the value on the top of the stack to a
given field in the instance referred to by the second topmost
value on the stack.

Tag: Will convert a value on the stack to a tagged union
type (choice) value that will replace the original value on the
stack. Examples are converting number 42 of type i32 to a
value of type option i32.

Match: This is the only instruction that branches execu-
tion. For this, a tagged union type value is taken from the
stack and, depending on the actual type, one of several code
blocks will be executed after the original value was recovered
and assigned to a field.

Box: Will convert a value that is on top of the stack to a
corresponding ref type. This permits value types like f64 to
be passed as a reference with type information to a routine
that expects a reference like Any.

Const: Creates a constant instance of given type from an
array of bytes that contain the value in a serialized form.
This works for simple types like u64 well as for product or
sum types.

Pop: Drop the top value from the stack.

Env: Obtain the current value of an effect of a given types.

Comment: A No-op, used to transfer debug comments
from earlier code transformation phases.

4.2.5 No Loops. FUIR has no commands for loops or, at a
lower level, conditional or unconditional jumps that would
allow building a loop. Instead, tail-recursive calls are used
to implement loops. This simplifies static analysis that will
have to be able to handle recursion anyway, so there is no
need for loop analysis. However, back end code generators

The Fuzion Intermediate Representation VMIL’24, October 20, 2024, Pasadena, CA, USA

or VMs must be able to optimize tail calls to avoid excessive
stack usage.

4.2.6 Intrinsics. The commands listed above lack many
operations that are typically present in intermediate formats.
In the FUIR, these operations are provided via calls to intrin-
sic features that are part of the Fuzion base library. These
intrinsics cover the following operations

• compile-time reflection such as Type.name
• atomic operations like compare_and_set
• debug levels
• access to command line arguments and env vars
• exit
• integer and float arithmetic
• low-level arrays
• effect handling: instantiation and abortion
• handling threads
• foreign function interface related operations
Currently, there are intrinsics for basic I/O operations and

access to file and networking as well. However, these should
become native features once we have a foreign function
interface for C library functions.

4.2.7 No Heap vs. Stack distinction. In the FUIR, a call
requires the allocation of memory for the current instance
that consist of all direct inner fields of a called feature. How-
ever, there is no distinction between heap and stack alloca-
tion like, e.g, in Java bytecode [10] where the new instruction
would allocate an instance of a class on the heap while the
invoke* instructions implicitly allocate a stack frame. Also,
FUIR does not make a distinction between an access to a
local variables or to a field fields in a heap allocated instance.

Instead, a call to a routine requires the allocation of mem-
ory for the called routine’s current instance such that the life
span of that instance covers all accesses to the inner fields.

Often, this life span ends when a function returns while it
lives on after returning form a ref type constructor. However,
the presence of inner features that have access to the fields
of their outer features via outer ref fields in their instances
may extend the outer instance’s life span in case the inner
instances remain accessible, e.g., by being returned as part
of a function result.
A data-flow analysis performed on the FUIR is used to

determine the life span of all instances that backends then
use to decide which instances require heap allocation and
which instances may be stack allocated, or use a completely
differen allocation context like a region [19].

5 Implementation
Currently, the Fuzion compiler is implemented in Java and
available freely on github [16]. Access to the Fuzion Inter-
mediate Representation is performed via a single Java class
dev.flang.fuir.FUIR, which provides an abstraction for the
actual file format.

An AbstractInterpreter class has been implemented using
FUIR to facilitate the processing of the intermediate code.
Any code processing the intermediate code can use this class
by implementing a few abstract methods that correspond
to the commands in the FUIR code and by providing im-
plementations of those intrinsics that are relevant for the
specific processing. All subsequent processors in the Fuzion
implementation, i.e., data flow analyzer and backends, are
built on top of this AbstractInterpreter.

5.1 Data-Flow Analysis
A data-flow analysis (DFA) using a variant of object-sensi-
tivity [12] has been implemented using the AbstractInter-
preter class. This permits accurate tracking of data flow.
Currently, this essentially serves as a powerful smart-

linker for the backends that get fed with an optimized FUIR
created by the DFA.

5.2 Interpreter
The simplest execution environment for FUIR code is an
interpreter implemented in Java that directly executes Java
code for each of the ten FUIR commands and that provides
implementations of the intrinsics. The interpreter currently
does rely on the underlying Java VM’s garbage collector, all
instances are allocated on the heap.

5.3 JVM back end
A second back end uses the AbstractInterpreter class to create
Java bytecode that can then either be loaded and executed
directly by the current JVM or saved as jar-file for later exe-
cution. A small runtime system is implemented in Java and
contains code for Thread handling, an effect stack implemen-
tation, etc.
Simple intrinsics are translated into inline bytecode in-

structions, while more complex ones are implemented as
Java methods in the runtime system. Instances are currently
mostly allocated on the Java heap, but infrastructure for stack
allocation of short-lived instances is being implemented,
even though the JVM implementations appear to perform
surprisingly efficient heap allocation.

5.4 C back end
A third back end generates C source code, also using the
AbstractInterpreter class and inline C code for all intrinsics.
Boehm’s garbage collector [3] is used as a temporary solution
until a native GC is implemented.

6 Related Work
The first Java Specification Request JSR1 [13] addressed the
desire to make Java a language suitable for real-time systems,
which was followed by the recent release of an update of the
Real-Time Specification for Java 2.0 in JSR282 [9]. There also
exists a proposal for safety-critical Java JSR302[5]. These

VMIL’24, October 20, 2024, Pasadena, CA, USA Fridtjof Siebert and Michael Lill

proposals address ways how a high-level language like Java
could be applied for safety-critical and real-time applications.
For Ada, the Ravenscar profile [4] and later SPARK [15]

defined a safety-critical profile for the Ada programming
language together with commercial tools. For Rust, the Fer-
rocene tool-chain targets critical systems [2].

In contrast to these attempts to bring high-level languages
to safety-critical applications, Fuzion attempts to design a
new high-level language for this application domain by pro-
viding a simplified language and intermediate code with
supporting tools.

7 Conclusion
The Fuzion language definition, its implementation and the
Fuzion Intermediate Representations presented here arework
in progress. The Fuzion team has a number of ambitious
development goals, the most important ones being stabiliz-
ing the Fuzion language definition itself, adding standard
libraries, improving the tools for static analysis and provid-
ing better and more efficient back ends.

Nevertheless, we see that having a language and an inter-
mediate representations that focus on simplicity and accessi-
bility by analysis tools can bring significant advantages to a
large number of software applications. In particular, we ex-
pect that the high engineering effort that is required for the
validation and verification process during the certification
of safety-critical systems can be reduced significantly, while
the production of software in general could profit from a
focus an simplicity for safety.

References
[1] 1992. RTCA/DO-178B Software Considerations in Airborne Systems

and Equipment Certification.
[2] 2024. This is Rust for critical systems. https://ferrocene.dev/en/
[3] Hans-Juergen Boehm. 1993. Space efficient conservative garbage

collection. In Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation (Albuquerque, New
Mexico, USA) (PLDI ’93). Association for Computing Machinery, New
York, NY, USA, 197–206. https://doi.org/10.1145/155090.155109

[4] A. Burns, B. Dobbing, and G. Romanski. [n. d.]. The Ravenscar Tasking
Profile for High Integrity Real-Time Programs. Proceedings of Ada-
Europe 98 1411 ([n. d.]), 263–275.

[5] C. Douglass Locke. 2006. JSR 302: Safety Critical Java Technology.
http://jcp.org/en/jsr/detail?id=302

[6] The LLVM Foundation. [n. d.]. LLVM Language Reference Manual.
https://llvm.org/docs/LangRef.html.

[7] Isabelle Contributors. [n. d.]. Isabelle proof assitant.
https://isabelle.in.tum.de/.

[8] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel
Smith, Gavin Bierman. 2023. The Java® Language Specification. Ora-
cle America, Inc. https://docs.oracle.com/javase/specs/jls/se21/html/
index.html

[9] James Hunt, Andy Wellings, David Bacon. 2024. JSR 282: RTSJ version
2.0. http://jcp.org/en/jsr/detail?id=282

[10] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2023. The
Java Virtual Machine Specification, Java SE 21 Edition. Oracle America,
Inc. https://docs.oracle.com/javase/specs/jvms/se21/jvms21.pdf

[11] Bertrand Meyer. 1992. Applying "Design by Contract". Computer 25,
10 (Oct. 1992), 40–51. https://doi.org/10.1109/2.161279

[12] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Pa-
rameterized object sensitivity for points-to and side-effect analyses
for Java. SIGSOFT Softw. Eng. Notes 27, 4 (jul 2002), 1–11. https:
//doi.org/10.1145/566171.566174

[13] Peter Dibble. 2006. JSR 1, Final Release 3: RTSJ version 1.02. http:
//jcp.org/en/jsr/detail?id=1

[14] Fridtjof Siebert. 2022. Fuzion - Safety through Simplicity. Ada Lett. 41,
1 (oct 2022), 83–86. https://doi.org/10.1145/3570315.3570323

[15] SPARK Team. [n. d.]. SPARK - The SPADE Ada Kernel (includ-
ing RavenSPARK), Edition 7.2. https://docs.adacore.com/sparkdocs-
docs/SPARK_LRM.htm. https://docs.adacore.com/sparkdocs-docs/
SPARK_LRM.htm

[16] The Fuzion Team. 2023. Fuzion GitHub Repository. https://github.
com/tokiwa-software/fuzion

[17] The Fuzion Team. 2024. Fuzion Portal Website. https://fuzion-lang.dev.
https://fuzion-lang.dev

[18] The Fuzion Team. 2024. Fuzion • Fuzion Design • File Formats •Module
File. https://fuzion-lang.dev/design/fum_file

[19] Mads Tofte and Lars Birkedal. 1998. A region inference algorithm.
ACM Trans. Program. Lang. Syst. 20, 4 (jul 1998), 724–767. https:
//doi.org/10.1145/291891.291894

https://ferrocene.dev/en/
https://doi.org/10.1145/155090.155109
http://jcp.org/en/jsr/detail?id=302
https://docs.oracle.com/javase/specs/jls/se21/html/index.html
https://docs.oracle.com/javase/specs/jls/se21/html/index.html
http://jcp.org/en/jsr/detail?id=282
https://docs.oracle.com/javase/specs/jvms/se21/jvms21.pdf
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/566171.566174
https://doi.org/10.1145/566171.566174
http://jcp.org/en/jsr/detail?id=1
http://jcp.org/en/jsr/detail?id=1
https://doi.org/10.1145/3570315.3570323
https://docs.adacore.com/sparkdocs-docs/SPARK_LRM.htm
https://docs.adacore.com/sparkdocs-docs/SPARK_LRM.htm
https://github.com/tokiwa-software/fuzion
https://github.com/tokiwa-software/fuzion
https://fuzion-lang.dev
https://fuzion-lang.dev/design/fum_file
https://doi.org/10.1145/291891.291894
https://doi.org/10.1145/291891.291894

	Abstract
	1 Introduction
	1.1 Goals for the IR Design
	1.2 Organization of this Paper

	2 Fuzion Language Introduction
	2.1 Building Block: Feature
	2.2 Types
	2.3 Expressions
	2.4 Nested Features
	2.5 Inheritance and Dynamic Binding
	2.6 Algebraic Effects
	2.7 Syntactic Sugar
	2.8 Information Hiding
	2.9 Code Example

	3 Fuzion Toolchain
	4 Intermediate Representation
	4.1 Binary format using offsets
	4.2 IR contents

	5 Implementation
	5.1 Data-Flow Analysis
	5.2 Interpreter
	5.3 JVM back end
	5.4 C back end

	6 Related Work
	7 Conclusion
	References

