
1

Algebraic Effects and Static Analysis for
Safety-Critical Applications in Fuzion

Fridtjof Siebert, Michael Lill, Max Teufel
Tokiwa Software GmbH, Karlsruhe, Germany; email: {siebert, michael.lill, max.teufel}@tokiwa.software

Abstract

This work-in-progress paper presents the introduction
of algebraic effects to the Fuzion language and how
algebraic effects can be used in the context of safety-
critical systems.

Fuzion is a modern, general purpose programming
language that unifies functional and object-oriented
paradigms into a pure functional language. Algebraic
effects are used to represent and manage non-functional
aspects like I/O operations or mutable state. Static anal-
ysis is used extensively at several stages in the Fuzion
toolchain to verify different correctness aspects of the
application.

We start with a condensed overview of the Fuzion lan-
guage to then describe how algebraic effects are used to
represent non-functional aspects. The Fuzion toolchain
will be explained and how static analysis is used to build
and validate applications. Finally, it will be shown how
algebraic effects can be used to model aspects relevant
to safety-critical systems.

Keywords: programming languages, algebraic effects,
static analysis, safety, security

1 Introduction

Fuzion is a work-in-progress project to design a new high-
level language targeting safety critical applications [1]. It
provides a novel way that combines aspects of object-oriented
and functional programming paradigms in a coherent and
simple way. Fuzion is pure in the sense that no public routine
will have any non-functional side-effects unless it is explicitly
declared to do so.

2 Fuzion Language Introduction

This section gives a condensed and recursive overview of the
Fuzion language and an introduction to its terminology, a
tutorial is available online [2].

2.1 Building Block: Feature

The building blocks of Fuzion applications are feature declara-
tions. There are different kinds of features, the most common
kinds are field and routine. A field is an immutable variable of

a statically fixed type that is initialized with a value calculated
from an expression. A routine is a callable feature with formal
arguments and code given as an expression. A routine may be
one of two kinds: a function that results in the value produced
by evaluation of its expression or a constructor that defines a
product type consisting of its inner fields. The arguments of a
routine themselves are features, they may be type parameters
or fields.

2.2 Types

Fuzion’s types fall into two categories, product types that
are defined by a constructor and sum types that are defined
by choice features. A choice feature defines a tagged union
type (choice type) of its type parameters, complementary to
a constructor feature that defines a product type of its inner
fields. Unlike constructor features, a choice feature may not
be called in an expression. An instance of a choice type is
created by an assignment of a value whose type is one of the
choice’s type parameters to a field of the choice type.

2.3 Expressions

An expression is code that can be evaluated to produce a result
value of the expression’s type. Any code that is executed must
therefore produce a result value when it returns, but there are
types like unit for values that do not contain any information
or void to indicate that the expression does not return1.

The most important expression is a feature call to a routine.
On a call, actual values are assigned to the routine’s formal
arguments: For arguments that are type parameters, the actual
values must be types, while for argument fields corresponding
expressions must be given. The result of a call to a function
is the value of the function’s expression, while the result of a
call to a constructor is the instance of the product type defined
by that constructor with arguments set to the actual types and
values and inner fields initialized to their initial values.

The only expression that permits conditional code is a match
that takes an expression that evaluates to an instance of a
choice type. Depending on the original type stored in the
choice, evaluation proceeds with one of several expressions.

Finally, Fuzion expressions allow nested declarations de-
scribed in the next sub-section:

1e.g., as the result type of a call to panic that aborts with an error

Ada User Jour na l Vo lume TBD_ISSUEEV, Number TBD_ISSUEEN, TBD_ISSUED

2 Algebra ic Ef fec ts for Sta t ic Analys is in Fuz ion

2.4 Nested Features

A feature declaration itself is a Fuzion expression that results
in a unit type result value. This permits fields to be nested
within routines, but also permits the nesting of routines. An
inner routine may access features declared in all of its outer
routines. On a call to a routine, a reference to the outer
instance is passed as an implicit argument.

2.5 Inheritance and Dynamic Binding

Constructors may inherit from other constructor features by
adding calls to these parents in the declaration. As a result,
the child inherits the parents’ inner features, which the child
may redefine.

Since Fuzion uses value semantics, using inheritance and
redefinition does not require dynamic binding. However, a
constructor may be defined as a reference type. If this is the
case for the parent, the child becomes assignable to fields of
the parent type and dynamic binding will be used.

2.6 Algebraic Effects

Fuzion routines are pure, i.e., their result depends only on the
values of the actual arguments including the implicit outer
instance. The only means to perform state changes or to inter-
act with the outside world is via algebraic effects. These are
features that inherit from a base feature effect and add effect
operations as inner features. Effects can be installed to run
code that can access the effect’s operations in its environment.
Static analysis is used to verify that all effects required for
certain code are actually installed in the code’s environment.

2.7 Syntactic Sugar

Fuzion uses extensive syntactic sugar to provide a more
human-readable syntax for common code patterns.

Conditionals of the form if -then-else are internally handled
like match expressions. This is possible since type bool in
Fuzion’s base library is defined as a choice type of unit types
FALSE and TRUE.

Loops are supported via a powerful syntax that is, internally,
mapped to tail-recursive calls2 and match expressions.

Type inference is used extensively in the frontend such
that —even though Fuzion is statically typed— types can be
omitted in most cases.

2.8 Information Hiding

Visibility of features and types can be restricted as private
(same source file, default), module (same module) and public.

2that will be optimized by the backends

3 Algebraic Effects

Purely functional code brings a number of advantages for
the correctness of a complex software system: The result of
every call depending only on the call’s arguments simplifies
(automatic) reasoning about the code, the absence of mutable
state results in thread-safety and the absence of side-effects
permits optimizations since there is no observable effect if
code is not executed or executed repeatedly. Also, if purity of
code from an untrusted source can be verified, it can safely
be used without compromising a system’s security.

However, for code to interact with the outside world or for
mere performance reasons, actual systems must be able to
perform non-functional operations. Examples include i/o
operations, mutation of data, inter-thread communication,
access to hw timers, sensors, actuators, aborting an operation,
and many more.

Algebraic Effect handlers [3,4,5,6] are used in recent program-
ming languages as a means to handle operations that would
break the purity by having non-functional side-effects. An
effect defines a set of such operations, while an effect handler
provides a concrete implementation of these operations. Code
that calls these operations is then said to require an instance
of the given effect in its environment. The environment is
essentially a stack of effects that is used to find the innermost
handler for each operation to be used.

3.1 Effects in Fuzion

Fuzion uses algebraic effects to wrap non-functional opera-
tions. An effect in Fuzion is a constructor feature that inherits
from a base library feature called effect and that defines a set
of operations as inner features. An effect can be instantiated
and installed to run code that uses the effect’s operations.
Effects are identified by their type [7].

Feature declarations in Fuzion include an optional section
to list all the effect types that are required to call that fea-
ture. Features that are marked as public must include this
information, which will be verified by static analysis.

3.2 Effects in dynamic code

A major difficulty in specifying the effects of a feature orig-
inates in the presence of dynamic code: functions that are
passed as arguments to routines may require additional effects
that are unknown to the called routine. E.g., one might want
to log calls to a function passed to a library routine, where
the effect that performs this logging is unknown to the library.
The same problem may occur if a redefinition of an inher-
ited feature uses effects that were unexpected by the original
routine.

To solve this, languages like Koka introduce effect polymor-
phism to declare required effects explicitly [8] while the Ef-
fekt language [9] simplifies effect polymorphism by viewing
effects as capabilities [10].

In Fuzion, static analysis is used both at module level and
at whole application level. At module level, effect polymor-
phism is analyzed only to the extend that control flow reaches

Volume TBD_ISSUEEV, Number TBD_ISSUEEN, TBD_ISSUED Ada User Jour na l

F. Sieber t , M. L i l l , M. Teufe l 3

the use of a given effect, while additional effects introduced
by users of that module through function arguments or redefi-
nition are ignored. At the application level, whole program
data-flow analysis verifies that all uses of effects occur in
environments that provide corresponding effect instances.

3.3 Effect Example

We will present a small example using an effect temp to model
a temperature sensor that can read a temperature in degrees
Centigrade:

temp (hdlr ()−>f64) : simple_effect is
read => hdlr ()

Here, temp is the effect constructor and also its type, and
read is the only operation, which gives a temperature reading.
read is implemented by calling a handler function hdlr, which
permits different implementations for different instances of
this effect.

Our application main loop now requires this temp effect to
repeatedly perform a temperature reading and printing the
result unless it is larger than 41°C, when it should call panic:

main ! temp =>
do

t := temp.env.read
if t > 41

panic " *** get doctor ***"
say "ok: $t°C."
time.nano.sleep (time.durations.ms 500)

In a deployed system, this would run with an instance of temp
using a handler that reads the temperature from a thermometer.
In a test setup, we can simulate the hardware using a handler
test_temp that reads and modifies a mutable field cur_temp:

cur_temp := mut 37.0
test_temp =>

t := cur_temp.get
cur_temp <− t+0.3
t

(temp test_temp).use main

This illustrates that, when using effects, we can separate the
program logic, main in this example, from the implementation
of non-functional aspects like reading a sensor.

4 Compilation Phases

The Fuzion toolchain (Fig 1) starts by compiling a set of
Fuzion source files *.fz into a Fuzion module name.fum. Mod-
ules may depend on other modules and compilation is done
against pre-compiled modules. The frontend phase checks
that the source code respects the language validity rules that
include type checks, visibility rules, etc.

Module files have unique version numbers, any change or
recompilation of one module requires recompilation of all
modules that depend on that module. There is hence no need
for mechanisms to detect incompatible changes at link or load
time as in other languages3.

3Java produces an IncompatibleClassChangeError in some cases, C could
fail during linking or crash at runtime in this case.

The middle end then builds an application name.fuir from
a main module that defines a main feature plus all the mod-
ules the main module depends on. The middle end performs
monomorphization, i.e., all type parameters are replaced by
actual types, features called with different type parameters
are specialized for all combinations of type parameters that
are used in the application.

Consequently, the intermediate code used for the application
is fairly simple, all types except runtime types of reference
values are known. Whole program static analyzers can now
process the application that is represented using the Fuzion
intermediate representation.

Finally, the intermediate representation is used by one of
the Fuzion backends to produce executable code. Currently,
three backends are implemented: a JVM bytecode genera-
tor, one backend that create C source code to be processed
by clang/llvm or other C toolchains and an interpreter that
directly executes the intermediate code.

5 Static Analysis in Fuzion

The use of static code analysis is essential in all compilation
phases of Fuzion: During the frontend phase, static data-flow
analysis is used to verify that dependencies on effects are
declared for public features, while whole application analysis
can be used for a variety of applications.

5.1 Intermediate Representation

The basis of the whole-program analysis is the Fuzion Inter-
mediate Representation FUIR. This representation consists
of a collection of features that were monomorphized, i.e., all
type parameters are replaced by actual runtime types while
features are duplicated for every combination of runtime types
found by the middle end.

Expressions that provide the code of routines are encoded
using a stack-based bytecode format, comparable to Java
bytecode [11]. However, there are currently only ten different
bytecode instructions:

• AdrOf — used for call-by-references for outer instances

• Assign — assign a value to a field

• Box — create a reference instance from a value instance

• Call — perform a call to a routine

• Comment — only used for debugging

• Const — create an instance from serialized byte data

.fz

Front
end

Middle
end

.fuir

JVM

backend
.class

.c

Analyzer

.fum

C
backend

Inter-
preter

JVM

.fuir

Figure 1: Fuzion toolchain and intermediate data.

Ada User Jour na l Vo lume TBD_ISSUEEV, Number TBD_ISSUEEN, TBD_ISSUED

4 Algebra ic Ef fec ts for Sta t ic Analys is in Fuz ion

• Current — return the instance of the current feature

• Env — obtain current instance of an algebraic effect type

• Pop — discard a value from the stack

• Match — extract the original value from a tagged union
type value and branch to code that processes that value

• Tag — create tagged union type value from a value of
one of the choice types

The low number of instructions helps to simplify the imple-
mentation of static analyzers and code generators.

There are no instructions for basic arithmetic operations. In-
stead, fundamental features like addition of values of type i32
are calls to features of kind intrinsic that must be provided by
the backends and handled by static analyzers correctly4.

5.2 Whole Application Analysis

The whole application analysis performs a data-flow anal-
ysis over an application until a fix-point is reached. As a
result, upper-bound sets of possible values for all fields and
expressions in different call contexts are found.

This analysis can be used for a number of purposes, e.g.

• Elimination of deactivated code

• proof of absence of errors5

• verification of pre- and post-conditions

• specialization of code for actual values

• determination of life-spans of instances, e.g., for auto-
matic stack or static allocation

• user feedback on heap allocation

Furthermore, we expect the application wide data-flow analy-
sis to be useful during the verification and validation process
by producing evidence for deactivated code, developing test
cases for better code coverage, or even correctness proofs by
verification of pre- and post-conditions.

6 Algebraic Effects for Safety and Security

Algebraic effects can be used to manage non-functional as-
pects related to the safety and security of the system:

6.1 Security along SW Supply Chain

Static, program-wide analysis will find all effects required by
code, including all effects required by third-party libraries.
This could be used to increase the security by providing harm-
less handlers to suppress undesired functionality. An example
is the log4shell vulnerability [12] that enabled downloading
and execution of arbitrary code in a widely used logging
library for Java. Static analysis would first help to detect
that such effects are used. Then, the library code could be
sandboxed by applications using effect handlers that prohibit
operations like network access or execution of arbitrary code.

4which, depending on the analysis, often permits ignoring them.
5which essentially means error handling. like calls to panic. is deactivated

6.2 Safety and Real-Time Aspects

With the presence of algebraic effects as a powerful means
to describe behavior that is not purely functional, we expect
to use these effects to address aspects that are of particular
importance to many safety-critical systems, e.g., to describe
and verify real-time behavior.

The following gives a list of possible effects that we want to
implement and apply in Fuzion:

• constant time — code contains no conditionals

• bounded time — code contains no unbounded recursion6

• non blocking — code performs no blocking operations

• no heap — code performs no heap allocation7

• interruptible — code may be aborted asynchronously

• worst-case execution time — execution time limit, en-
forced by analysis or at runtime

The flexible way that algebraic effects permit to introduce
scopes of arbitrary types into the program in conjunction with
the ability of static analysis to attach semantics to these effects
and verify these semantics appears to give a powerful tool to
handle safety and real-time aspects.

7 Conclusions and Future Work

We have presented the Fuzion project that develops a pure
functional language using algebraic effects and a correspond-
ing toolchain and showed how we expect the use of Fuzion to
help enhance security and help during safety verification and
validation.

The project is still in an early prototype state, we have basic
implementations of the frontend, middle-end, first versions
of static analysis using data-flow analysis and three different
backends.

The current focus of our work is on improving the base li-
brary, in particular to model a variety of non-functional as-
pects using algebraic effects. The Fuzion intermediate rep-
resentation is kept simple to encourage the integration with
different powerful tools, an integration with proof assistants
like Rocq/Coq [13] or Isabelle [14] might increase the power
of correctness proofs significantly.

Fuzion has a powerful interface to call Java code, but we will
need other foreign function interfaces, in particular for C, to
inter-operate with legacy code. The C backend currently uses
the garbage collector by Hans Boehm [15], for use of Fuzion
in real-time systems, we will need to ensure that all allocation
can be performed statically or use a real-time GC [16].

6this implies bounded loops since loops use recursion
7and, with a suitable GC, is hence never preempted by GC work

Volume TBD_ISSUEEV, Number TBD_ISSUEEN, TBD_ISSUED Ada User Jour na l

F. Sieber t , M. L i l l , M. Teufe l 5

References

[1] F. Siebert, “Fuzion - safety through simplicity,” Ada
Lett., vol. 41, p. 83–86, oct 2022.

[2] “Fuzion Portal Website.” https://fuzion-lang.dev, 2024.

[3] G. Plotkin and J. Power, “Algebraic operations and
generic effects,” Applied categorical structures, vol. 11,
pp. 69–94, 2003.

[4] G. Plotkin and M. Pretnar, “Handlers of algebraic ef-
fects,” in Proceedings of the 18th European Symposium
on Programming Languages and Systems: Held as Part
of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2009, ESOP ’09, (Berlin, Hei-
delberg), p. 80–94, Springer-Verlag, 2009.

[5] G. D. Plotkin and M. Pretnar, “Handling algebraic ef-
fects,” Logical methods in computer science, vol. 9,
2013.

[6] M. Pretnar, “An introduction to algebraic effects and
handlers. invited tutorial paper,” Electron. Notes Theor.
Comput. Sci., vol. 319, p. 19–35, dec 2015.

[7] F. Siebert, “Types as first-class values in fuzion.” Talk
at TyDe 2023: 8th ACM SIGPLAN International
Workshop on Type-Driven Development, https://fuzion-
lang.dev/talks/tyde23types, sep 2023.

[8] D. Leijen, “Koka: Programming with row polymorphic
effect types,” arXiv preprint arXiv:1406.2061, 2014.

[9] The Effekt research team, “Effekt Language — Ef-
fect Safety.” https://effekt-lang.org/docs/concepts/effect-
safety, 2023.

[10] J. I. Brachthäuser, P. Schuster, and K. Ostermann, “Ef-
fekt: Lightweight effect polymorphism for handlers
(technical report),” tech. rep., University of Tübingen,
Germany, 2020.

[11] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The
Java Virtual Machine Specification, Java SE 21 Edition.
Oracle America, Inc., sep 2023.

[12] “Cve-2021-44228 apache log4j2 jndi fea-
tures do not protect against attacker con-
trolled ldap and other jndi related endpoints.”
https://www.cve.org/CVERecord?id=CVE-2021-
44228, dec 2021.

[13] Coq Development Team, “The coq proof assitant.”
https://coq.inria.fr/.

[14] Isabelle Contributors, “Isabelle proof assitant.”
https://isabelle.in.tum.de/.

[15] H.-J. Boehm, “Space efficient conservative garbage col-
lection,” in Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and
Implementation, PLDI ’93, (New York, NY, USA),
p. 197–206, Association for Computing Machinery,
1993.

[16] F. Siebert, “Concurrent, parallel, real-time garbage-
collection,” in Proceedings of the 2010 International
Symposium on Memory Management, ISMM ’10, (New
York, NY, USA), p. 11–20, Association for Computing
Machinery, 2010.

Ada User Jour na l Vo lume TBD_ISSUEEV, Number TBD_ISSUEEN, TBD_ISSUED

