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Who is this guy?
Fridtjof Siebert

Email: siebert@tokiwa.software
github: fridis
twitter: @fridi_s

‘90-‘94 AmigaOberon, AMOK PD
‘97 FEC Eiffel Sparc / Solaris
‘98-‘99 OSF: TurboJ Java Compiler
‘00-‘01 PhD on real-time GC
‘02-‘19 JamaicaVM real-time JVM based on

CLASSSPATH / OpenJDK,
VeriFlux static analysis tool

‘20-… Fuzion 
‘21-… Tokiwa Software
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Motivation
Many languages overloaded with concepts like classes, 
methods, interfaces, constructors, traits, records, structs, 
packages, values, …

 ➡ Fuzion has one concept: a feature
Today’s compilers and tools are more powerful

 ➡ Tools make better decisions 
Systems are safety-critical

 ➡ we need to ensure correctness
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Fuzion Summary
Fuzion

 ➡ uses the feature as its main concept

 ➡ is a statically typed functional language 

 ➡ has inheritance and redefinition

 ➡ uses value types and dynamic (ref) types

 ➡ fields immutable, uses effects for non-functional aspects

 ➡ offloads tasks and decisions from developers to tools
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Fuzion Logo
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Fuzion Resources
Fuzion available 
 ➡ sources: github.com/tokiwa-software/fuzion
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Fuzion Resources
Fuzion available 
 ➡ sources: github.com/tokiwa-software/fuzion
 ➡ Website: flang.dev

● tutorial
● design
● examples
● ...
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Backing Company

 ➡ supports development of Fuzion

 ➡ currently four employees

 ➡ hiring

 ➡ searching for funding
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Safety vs. Security
Both ‚Sicherheit‘ in German
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Safety vs. Security
Both ‚Sicherheit‘ in German

 ➡ Safety is the state of being "safe", the condition of being
➡ protected from harm or other danger.

—wikipedia
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Safety vs. Security
Both ‚Sicherheit‘ in German

 ➡ Safety is the state of being "safe", the condition of being
➡ protected from harm or other danger.

—wikipedia

 ➡ Security is protection from, or resilience against, potential
➡ harm caused by others, by restraining the freedom
➡ of others to act. 

—wikipedia
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Safety vs. Security
Both ‚Sicherheit‘ in German

 ➡ Safety is the state of being "safe", the condition of being
➡ protected from harm or other danger.

—wikipedia

 ➡ Security is protection from, or resilience against, potential
➡ harm caused by others, by restraining the freedom
➡ of others to act. 

—wikipedia
clipart from openclipart.org by Anonymous and rygle
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Safety vs. Security
Code examples 

 ➡ Safety  
printf(str);

  — may crash

 ➡ Security
 str = readString();

 printf(str); 
— may give root access

clipart from openclipart.org by Anonymous and rygle
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Safety vs. Security
Code examples (C code)

 ➡ Safety  
printf(str);

  — may crash

 ➡ Security
 str = readString();

 printf(str); 
— may give root access

clipart from openclipart.org by Anonymous and rygle
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Safety vs. Security
Code examples (C code)

 ➡ Safety  
printf(str);

  — may crash

 ➡ Security
 str = readString();

 printf(str); 
— may give root access

clipart from openclipart.org by Anonymous and rygle
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Safety-Critical Systems

      Pictures by Simon Maage, Timi Keszthelyi, Winston Chen, Andrey Metelev, Lenny Kuhne, SpaceX, Zeiss, unsplash.com
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Safety-Critical Systems
Definition (Wikipedia)

 ➡ a system whose failure or malfunction may result in [..]:

● death or serious injury to people

● loss or severe damage to equipment/property

● environmental harm

 ➡ often require certification (IEC61508, DO178C, etc.)
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Safety-Critical Systems
Certification typically requires

 ➡ defined SW development process

 ➡ traceability

● requirements ⬌ code ⬌ validation ⬌ results

 ➡ rigorous verification and validation

● static analysis can help
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Fuzion Language 
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Fuzion Language Tutorial
Not part of this talk

 ➡ online at flang.dev
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Fuzion Feature
A Feature is the main abstraction mechanism

 ➡ generalizes concepts like 
● package
● class, interface, trait
● method
● record, struct
● etc.



GPN20: Fuzion — A new Programming Language for Safety 23

Feature Examples
Feature as routine with code{

 HelloWorld is
   say "Hello World!"
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Feature Examples
Nesting of Features{

 HelloWorld is
   hw =>    
     say "Hello World!"

   hw
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Feature Examples
Features with arguments{

 HelloWorld is
   hw(name string) =>    
     say "Hello $name!"

   hw "World"
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Feature Examples
Features with inner features{

 HelloWorld is
   hw(name string) is    
     run =>
       say "Hello $name!"  

   x := hw "World"
   x.run
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Feature Examples
Features with inner features{

 HelloWorld is
   hw(name string) is    
     run =>
       say "Hello $name!"  

   x := hw "World"
   x.run
Fuzion code consists of feature declarations and feature calls.
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Indentation vs. { }
Fuzion uses indentation and white space{

 HelloWorld is
   hw(name string) is    
     run =>
       say "Hello $name!"  

   x := hw "World"
   x.run
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Indentation vs. { }
Fuzion uses indentation and white space{

 HelloWorld is
 │ hw(name string) is    
 │ │ run =>
 │ │ │ say "Hello $name!"     
 │  
 │ x := hw "World"
 │ x.run
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Indentation vs. { }
Fuzion uses indentation and white space{

 HelloWorld is
 │ hw(name string) is    
 │ │ run =>
 │ │ │ say⏟"Hello $name!"    
 │  
 │ x := hw⏟"World"
 │ x.run
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Indentation vs. { }
Fuzion also permits { } and ; — indentation must match nesting.

 HelloWorld {
 │ hw(name string) {
 │ │ run => {
 │ │ │ say("Hello $name!");
 │   }
 │ }
 │ x := hw("World");
 │ x.run();
 }
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What does Fuzion not have?
Capabilities considered harmful:

➡ Dynamic Loading
 ➡ Macros
 ➡ Reflection
 ➡ Pointer Arithmetic
 ➡ (uncontrolled) Mutability
 ➡ Exceptions

Reasons:
➡ We must know what code does

 ➡ Static Analysis
➡ Safety
➡ Performance  

3
clipart by Juhele @ openclipart.org
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Design by Contract
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Design by Contract
Features define their behavior

 ➡ pre-condition: what has to hold before a call?

 ➡ post-condition: what guarantee is given after the call?

 ➡ concept presented by Betrand Meyer back in 1986
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Design by Contract: Example

 sqrt(a i32) i32
   pre
     a >= 0
   post
     result * result <= a,
     (result + 1) * (result + 1) > a
 is
   ...
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Controlling Contract Checks
Checking contracts dynamically

 ➡ will introduce run-time overhead

 ➡ may be prohibitively expensive

 ➡ may be required for safety
Solution

 ➡ qualified contracts
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Qualified Contracts

 sqrt(a i32) i32
   pre
     debug: a >= 0
   post
     debug 5 : result * result <= a,
     debug 5 : (result + 1) * (result + 1) > a
 is
   ...
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Contract Qualifiers
Fuzion contract qualifiers

 ➡ safety
 ➡ debug
 ➡ debug n
 ➡ pedantic
 ➡ analysis



GPN20: Fuzion — A new Programming Language for Safety 39

Contracts for Static Analysis

 max(a Sequence<i32>) i32
   pre
     debug: !a.isEmpty
   post
     debug: a ∀ x -> x <= result
     debug: a ∃ x -> x = result
     analysis: ∀ i32 x -> x ∈ a : x <= result
     analysis: ∃ i32 x -> x ∈ a && x = result
 is
   ...
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Design-by-Contract & Certification
Contracts provide

 ➡ direct way to add formal requirements to code

 ➡ means to verify these requirements at runtime

 ➡ means to define (or generate) tests

 ➡ formal analysis tools may verify code implements contract
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(Side-) Effects and Safety / Security
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(Side-) Effects and Safety / Security
Recent security alerts
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(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell
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(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell

 ➡ SpringShell
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(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell

 ➡ SpringShell

 ➡ rustdecimal crate
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(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell

 ➡ SpringShell

 ➡ rustdecimal crate
Common problem?
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(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell

 ➡ SpringShell

 ➡ rustdecimal crate
Common problem

 ➡ Code has unexpected (side-) effects 

clipart by j4p4n @
 openclipart.or g
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(Side-) Effects and Safety / Security
Functional community propagates side-effect free code

 ➡ only ‘pure’ functions, no state changes

 ➡ I/O modeled using monads or effect systems

 ➡ automatic thread safety

 ➡ easy parallelization
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Fuzion Effects
Fuzion Features are pure functions

 ➡ no mutation of data, no side-effects
Effects are used to model non-functional aspects

 ➡ state changes

 ➡ I/O

 ➡ thread communication

 ➡ exceptions
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Fuzion Effects
Static Analysis verifies effects

 ➡ Static analysis determines all effects

 ➡ library code must list all effects

 ➡ unexpected effects are a compile-time error
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Fuzion Effects Example
See demo
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Fuzion Effects Example: random
Getting a new random number has side-effects

 ➡ original seed must come from somewhere

 ➡ either environment variable

 ➡ or time.nano.
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Fuzion Toolchain Design 
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Fuzion Toolchain Design 

.fz

.fz

.fz
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Fuzion Toolchain Design 

.fz

Front
end.fz

.fz
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Fuzion Toolchain Design 

.fz

Front
end

.fum

.fz

.fz

.fum

.fum
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Fuzion Toolchain Design 

.fz

Front
end

.fum Middle
end

.fapp

.fz

.fz

.fum

.fum
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Fuzion Toolchain Design 

.fz

Front
end

.fum Middle
end

.fapp  

.fuir

.fz

.fz

.fum

.fum

Optimizer
Analyzer
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Fuzion Toolchain Design 

.fz

Front
end

.fum Middle
end

.fapp  

.fuir

Back
end

jar

Back
end

elf

.fz

.fz

.fum

.fum

Optimizer
Analyzer
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Static Analysis In Fuzion Toolchain
Static analysis currently mostly non-existant.
Will be added to 

 ➡ Front End

 ➡ Middle End

 ➡ Optimizer/Analyzer
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Analysis Facilitated by Simple IR
Fuzion Module files contain

 ➡ Features
● five kinds: routine, field, intrinsic, abstract or choice
● contain name, code, types, inner features

 ➡ Types are feature types or type parameters

 ➡ Code: 10 expressions: call, match, const, assign, pop, ...
● no loops, no gotos
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Static Analysis in Front End
Analyze single module 

 ➡ Type Checking

 ➡ Init-before-use

 ➡ Thread safety

.fz

Front
end

.fum

.fz

.fz

.fum

.fum
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Static Analysis in Middle End
Analyze whole application 

 ➡ Dead code removal

 ➡ Code Specialization

 ➡ Thread local data detection

.fum Middle
end

.fapp

.fum

.fum
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Static Analysis in Optimizer/Analyzer
Analyze whole application 

 ➡ Compile-time evaluation

 ➡ Code Specialization

 ➡ Call-graph analysis

 ➡ Lifespan analysis
● stack vs. heap allocation

 ➡ Program-wide data flow

.fapp  

.fuir

Optimizer
Analyzer
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Other Tools: FZJava 
Create Fuzion interface to Java module

java.lang.System.out.println "Hello Java !"🌍

fzjava .fz.jmod
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Other Tools: Language Server 
Support for IDEs and editors (vim, emacs)

 ➡ completion

 ➡ signature help

 ➡ documentation

 ➡ ...
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Other Tools: FuzionDoc tool 
Extract documentation from Fuzion source code
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Fuzion: Next Steps
Development Plan
 ➡ intermediate files:  .fum, .fapp, .fuir
 ➡ simple data-flow-based analysis tools
 ➡ C back-end: GC

● interfacing C library code

 ➡ Standard Library
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Conclusion
Fuzion is an exciting new language for safety
 ➡ focus on simplicity
 ➡ uses design-by-contract and effects
 ➡ prepared for static analysis
 ➡ we need 

● to grow our team
● get developer feedback
● secure long-term funding

 ➡ please get involved!

http://flang.dev
siebert@tokiwa.software

github.com/tokiwa-software/fuzion
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