
Fuzion

A new Programming Language for Safety

GPN20: Fuzion — A new Programming Language for Safety 2

Who is this guy?
Fridtjof Siebert

Email: siebert@tokiwa.software
github: fridis
twitter: @fridi_s

‘90-‘94 AmigaOberon, AMOK PD
‘97 FEC Eiffel Sparc / Solaris
‘98-‘99 OSF: TurboJ Java Compiler
‘00-‘01 PhD on real-time GC
‘02-‘19 JamaicaVM real-time JVM based on

CLASSSPATH / OpenJDK,
VeriFlux static analysis tool

‘20-… Fuzion
‘21-… Tokiwa Software

GPN20: Fuzion — A new Programming Language for Safety 3

Motivation
Many languages overloaded with concepts like classes,
methods, interfaces, constructors, traits, records, structs,
packages, values, …

 ➡ Fuzion has one concept: a feature
Today’s compilers and tools are more powerful

 ➡ Tools make better decisions
Systems are safety-critical

 ➡ we need to ensure correctness

GPN20: Fuzion — A new Programming Language for Safety 4

Fuzion Summary
Fuzion

 ➡ uses the feature as its main concept

 ➡ is a statically typed functional language

 ➡ has inheritance and redefinition

 ➡ uses value types and dynamic (ref) types

 ➡ fields immutable, uses effects for non-functional aspects

 ➡ offloads tasks and decisions from developers to tools

GPN20: Fuzion — A new Programming Language for Safety 5

Fuzion Logo

GPN20: Fuzion — A new Programming Language for Safety 6

Fuzion Resources
Fuzion available
 ➡ sources: github.com/tokiwa-software/fuzion

GPN20: Fuzion — A new Programming Language for Safety 7

Fuzion Resources
Fuzion available
 ➡ sources: github.com/tokiwa-software/fuzion
 ➡ Website: flang.dev

● tutorial
● design
● examples
● ...

GPN20: Fuzion — A new Programming Language for Safety 8

Backing Company

 ➡ supports development of Fuzion

 ➡ currently four employees

 ➡ hiring

 ➡ searching for funding

GPN20: Fuzion — A new Programming Language for Safety 9

Safety vs. Security
Both ‚Sicherheit‘ in German

GPN20: Fuzion — A new Programming Language for Safety 10

Safety vs. Security
Both ‚Sicherheit‘ in German

 ➡ Safety is the state of being "safe", the condition of being
➡ protected from harm or other danger.

—wikipedia

GPN20: Fuzion — A new Programming Language for Safety 11

Safety vs. Security
Both ‚Sicherheit‘ in German

 ➡ Safety is the state of being "safe", the condition of being
➡ protected from harm or other danger.

—wikipedia

 ➡ Security is protection from, or resilience against, potential
➡ harm caused by others, by restraining the freedom
➡ of others to act.

—wikipedia

GPN20: Fuzion — A new Programming Language for Safety 12

Safety vs. Security
Both ‚Sicherheit‘ in German

 ➡ Safety is the state of being "safe", the condition of being
➡ protected from harm or other danger.

—wikipedia

 ➡ Security is protection from, or resilience against, potential
➡ harm caused by others, by restraining the freedom
➡ of others to act.

—wikipedia
clipart from openclipart.org by Anonymous and rygle

GPN20: Fuzion — A new Programming Language for Safety 13

Safety vs. Security
Both ‚Sicherheit‘ in German

 ➡ Safety is the state of being "safe", the condition of being
➡ protected from harm or other danger.

—wikipedia

 ➡ Security is protection from, or resilience against, potential
➡ harm caused by others, by restraining the freedom
➡ of others to act.

—wikipedia
clipart from openclipart.org by Anonymous and rygle

GPN20: Fuzion — A new Programming Language for Safety 14

Safety vs. Security
Code examples

 ➡ Safety
printf(str);

 — may crash

 ➡ Security
 str = readString();

 printf(str);
— may give root access

clipart from openclipart.org by Anonymous and rygle

GPN20: Fuzion — A new Programming Language for Safety 15

Safety vs. Security
Code examples (C code)

 ➡ Safety
printf(str);

 — may crash

 ➡ Security
 str = readString();

 printf(str);
— may give root access

clipart from openclipart.org by Anonymous and rygle

GPN20: Fuzion — A new Programming Language for Safety 16

Safety vs. Security
Code examples (C code)

 ➡ Safety
printf(str);

 — may crash

 ➡ Security
 str = readString();

 printf(str);
— may give root access

clipart from openclipart.org by Anonymous and rygle

GPN20: Fuzion — A new Programming Language for Safety 17

Safety-Critical Systems

 Pictures by Simon Maage, Timi Keszthelyi, Winston Chen, Andrey Metelev, Lenny Kuhne, SpaceX, Zeiss, unsplash.com

GPN20: Fuzion — A new Programming Language for Safety 18

Safety-Critical Systems
Definition (Wikipedia)

 ➡ a system whose failure or malfunction may result in [..]:

● death or serious injury to people

● loss or severe damage to equipment/property

● environmental harm

 ➡ often require certification (IEC61508, DO178C, etc.)

GPN20: Fuzion — A new Programming Language for Safety 19

Safety-Critical Systems
Certification typically requires

 ➡ defined SW development process

 ➡ traceability

● requirements ⬌ code ⬌ validation ⬌ results

 ➡ rigorous verification and validation

● static analysis can help

GPN20: Fuzion — A new Programming Language for Safety 20

Fuzion Language

GPN20: Fuzion — A new Programming Language for Safety 21

Fuzion Language Tutorial
Not part of this talk

 ➡ online at flang.dev

GPN20: Fuzion — A new Programming Language for Safety 22

Fuzion Feature
A Feature is the main abstraction mechanism

 ➡ generalizes concepts like
● package
● class, interface, trait
● method
● record, struct
● etc.

GPN20: Fuzion — A new Programming Language for Safety 23

Feature Examples
Feature as routine with code{

 HelloWorld is
 say "Hello World!"

GPN20: Fuzion — A new Programming Language for Safety 24

Feature Examples
Nesting of Features{

 HelloWorld is
 hw =>
 say "Hello World!"

 hw

GPN20: Fuzion — A new Programming Language for Safety 25

Feature Examples
Features with arguments{

 HelloWorld is
 hw(name string) =>
 say "Hello $name!"

 hw "World"

GPN20: Fuzion — A new Programming Language for Safety 26

Feature Examples
Features with inner features{

 HelloWorld is
 hw(name string) is
 run =>
 say "Hello $name!"

 x := hw "World"
 x.run

GPN20: Fuzion — A new Programming Language for Safety 27

Feature Examples
Features with inner features{

 HelloWorld is
 hw(name string) is
 run =>
 say "Hello $name!"

 x := hw "World"
 x.run
Fuzion code consists of feature declarations and feature calls.

GPN20: Fuzion — A new Programming Language for Safety 28

Indentation vs. { }
Fuzion uses indentation and white space{

 HelloWorld is
 hw(name string) is
 run =>
 say "Hello $name!"

 x := hw "World"
 x.run

GPN20: Fuzion — A new Programming Language for Safety 29

Indentation vs. { }
Fuzion uses indentation and white space{

 HelloWorld is
 │ hw(name string) is
 │ │ run =>
 │ │ │ say "Hello $name!"
 │
 │ x := hw "World"
 │ x.run

GPN20: Fuzion — A new Programming Language for Safety 30

Indentation vs. { }
Fuzion uses indentation and white space{

 HelloWorld is
 │ hw(name string) is
 │ │ run =>
 │ │ │ say⏟"Hello $name!"
 │
 │ x := hw⏟"World"
 │ x.run

GPN20: Fuzion — A new Programming Language for Safety 31

Indentation vs. { }
Fuzion also permits { } and ; — indentation must match nesting.

 HelloWorld {
 │ hw(name string) {
 │ │ run => {
 │ │ │ say("Hello $name!");
 │ }
 │ }
 │ x := hw("World");
 │ x.run();
 }

GPN20: Fuzion — A new Programming Language for Safety 32

What does Fuzion not have?
Capabilities considered harmful:

➡ Dynamic Loading
 ➡ Macros
 ➡ Reflection
 ➡ Pointer Arithmetic
 ➡ (uncontrolled) Mutability
 ➡ Exceptions

Reasons:
➡ We must know what code does

 ➡ Static Analysis
➡ Safety
➡ Performance

3
clipart by Juhele @ openclipart.org

GPN20: Fuzion — A new Programming Language for Safety 33

Design by Contract

GPN20: Fuzion — A new Programming Language for Safety 34

Design by Contract
Features define their behavior

 ➡ pre-condition: what has to hold before a call?

 ➡ post-condition: what guarantee is given after the call?

 ➡ concept presented by Betrand Meyer back in 1986

GPN20: Fuzion — A new Programming Language for Safety 35

Design by Contract: Example

 sqrt(a i32) i32
 pre
 a >= 0
 post
 result * result <= a,
 (result + 1) * (result + 1) > a
 is
 ...

GPN20: Fuzion — A new Programming Language for Safety 36

Controlling Contract Checks
Checking contracts dynamically

 ➡ will introduce run-time overhead

 ➡ may be prohibitively expensive

 ➡ may be required for safety
Solution

 ➡ qualified contracts

GPN20: Fuzion — A new Programming Language for Safety 37

Qualified Contracts

 sqrt(a i32) i32
 pre
 debug: a >= 0
 post
 debug 5 : result * result <= a,
 debug 5 : (result + 1) * (result + 1) > a
 is
 ...

GPN20: Fuzion — A new Programming Language for Safety 38

Contract Qualifiers
Fuzion contract qualifiers

 ➡ safety
 ➡ debug
 ➡ debug n
 ➡ pedantic
 ➡ analysis

GPN20: Fuzion — A new Programming Language for Safety 39

Contracts for Static Analysis

 max(a Sequence<i32>) i32
 pre
 debug: !a.isEmpty
 post
 debug: a ∀ x -> x <= result
 debug: a ∃ x -> x = result
 analysis: ∀ i32 x -> x ∈ a : x <= result
 analysis: ∃ i32 x -> x ∈ a && x = result
 is
 ...

GPN20: Fuzion — A new Programming Language for Safety 40

Design-by-Contract & Certification
Contracts provide

 ➡ direct way to add formal requirements to code

 ➡ means to verify these requirements at runtime

 ➡ means to define (or generate) tests

 ➡ formal analysis tools may verify code implements contract

GPN20: Fuzion — A new Programming Language for Safety 41

(Side-) Effects and Safety / Security

GPN20: Fuzion — A new Programming Language for Safety 42

(Side-) Effects and Safety / Security
Recent security alerts

GPN20: Fuzion — A new Programming Language for Safety 43

(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell

GPN20: Fuzion — A new Programming Language for Safety 44

(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell

 ➡ SpringShell

GPN20: Fuzion — A new Programming Language for Safety 45

(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell

 ➡ SpringShell

 ➡ rustdecimal crate

GPN20: Fuzion — A new Programming Language for Safety 46

(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell

 ➡ SpringShell

 ➡ rustdecimal crate
Common problem?

GPN20: Fuzion — A new Programming Language for Safety 47

(Side-) Effects and Safety / Security
Recent security alerts

 ➡ log4shell

 ➡ SpringShell

 ➡ rustdecimal crate
Common problem

 ➡ Code has unexpected (side-) effects

clipart by j4p4n @
 openclipart.or g

GPN20: Fuzion — A new Programming Language for Safety 48

(Side-) Effects and Safety / Security
Functional community propagates side-effect free code

 ➡ only ‘pure’ functions, no state changes

 ➡ I/O modeled using monads or effect systems

 ➡ automatic thread safety

 ➡ easy parallelization

GPN20: Fuzion — A new Programming Language for Safety 49

Fuzion Effects
Fuzion Features are pure functions

 ➡ no mutation of data, no side-effects
Effects are used to model non-functional aspects

 ➡ state changes

 ➡ I/O

 ➡ thread communication

 ➡ exceptions

GPN20: Fuzion — A new Programming Language for Safety 50

Fuzion Effects
Static Analysis verifies effects

 ➡ Static analysis determines all effects

 ➡ library code must list all effects

 ➡ unexpected effects are a compile-time error

GPN20: Fuzion — A new Programming Language for Safety 51

Fuzion Effects Example
See demo

GPN20: Fuzion — A new Programming Language for Safety 52

Fuzion Effects Example: random
Getting a new random number has side-effects

 ➡ original seed must come from somewhere

 ➡ either environment variable

 ➡ or time.nano.

GPN20: Fuzion — A new Programming Language for Safety 53

Fuzion Toolchain Design

GPN20: Fuzion — A new Programming Language for Safety 54

Fuzion Toolchain Design

.fz

.fz

.fz

GPN20: Fuzion — A new Programming Language for Safety 55

Fuzion Toolchain Design

.fz

Front
end.fz

.fz

GPN20: Fuzion — A new Programming Language for Safety 56

Fuzion Toolchain Design

.fz

Front
end

.fum

.fz

.fz

.fum

.fum

GPN20: Fuzion — A new Programming Language for Safety 57

Fuzion Toolchain Design

.fz

Front
end

.fum Middle
end

.fapp

.fz

.fz

.fum

.fum

GPN20: Fuzion — A new Programming Language for Safety 58

Fuzion Toolchain Design

.fz

Front
end

.fum Middle
end

.fapp

.fuir

.fz

.fz

.fum

.fum

Optimizer
Analyzer

GPN20: Fuzion — A new Programming Language for Safety 59

Fuzion Toolchain Design

.fz

Front
end

.fum Middle
end

.fapp

.fuir

Back
end

jar

Back
end

elf

.fz

.fz

.fum

.fum

Optimizer
Analyzer

GPN20: Fuzion — A new Programming Language for Safety 60

Static Analysis In Fuzion Toolchain
Static analysis currently mostly non-existant.
Will be added to

 ➡ Front End

 ➡ Middle End

 ➡ Optimizer/Analyzer

GPN20: Fuzion — A new Programming Language for Safety 61

Analysis Facilitated by Simple IR
Fuzion Module files contain

 ➡ Features
● five kinds: routine, field, intrinsic, abstract or choice
● contain name, code, types, inner features

 ➡ Types are feature types or type parameters

 ➡ Code: 10 expressions: call, match, const, assign, pop, ...
● no loops, no gotos

GPN20: Fuzion — A new Programming Language for Safety 62

Static Analysis in Front End
Analyze single module

 ➡ Type Checking

 ➡ Init-before-use

 ➡ Thread safety

.fz

Front
end

.fum

.fz

.fz

.fum

.fum

GPN20: Fuzion — A new Programming Language for Safety 63

Static Analysis in Middle End
Analyze whole application

 ➡ Dead code removal

 ➡ Code Specialization

 ➡ Thread local data detection

.fum Middle
end

.fapp

.fum

.fum

GPN20: Fuzion — A new Programming Language for Safety 64

Static Analysis in Optimizer/Analyzer
Analyze whole application

 ➡ Compile-time evaluation

 ➡ Code Specialization

 ➡ Call-graph analysis

 ➡ Lifespan analysis
● stack vs. heap allocation

 ➡ Program-wide data flow

.fapp

.fuir

Optimizer
Analyzer

GPN20: Fuzion — A new Programming Language for Safety 65

Other Tools: FZJava
Create Fuzion interface to Java module

java.lang.System.out.println "Hello Java !"🌍

fzjava .fz.jmod

GPN20: Fuzion — A new Programming Language for Safety 66

Other Tools: Language Server
Support for IDEs and editors (vim, emacs)

 ➡ completion

 ➡ signature help

 ➡ documentation

 ➡ ...

GPN20: Fuzion — A new Programming Language for Safety 67

Other Tools: FuzionDoc tool
Extract documentation from Fuzion source code

GPN20: Fuzion — A new Programming Language for Safety 68

Fuzion: Next Steps
Development Plan
 ➡ intermediate files: .fum, .fapp, .fuir
 ➡ simple data-flow-based analysis tools
 ➡ C back-end: GC

● interfacing C library code

 ➡ Standard Library

GPN20: Fuzion — A new Programming Language for Safety 69

Conclusion
Fuzion is an exciting new language for safety
 ➡ focus on simplicity
 ➡ uses design-by-contract and effects
 ➡ prepared for static analysis
 ➡ we need

● to grow our team
● get developer feedback
● secure long-term funding

 ➡ please get involved!

http://flang.dev
siebert@tokiwa.software

github.com/tokiwa-software/fuzion

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69

