
1

Fuzion – Safety through Simplicity

Dr. Fridtjof Siebert
Tokiwa Software GmbH, Karlsruhe, Germany; email: siebert@tokiwa.software

Abstract

Fuzion is a modern, general purpose programming lan-
guage that unifies concepts found in structured, func-
tional and object-oriented programming languages into
the concept of a Fuzion feature. It combines a power-
ful syntax and safety features based on the design-by-
contract principle with a simple intermediate represen-
tation that enables powerful optimizing compilers and
static analysis tools to verify correctness aspects.

Fuzion maps different concepts into the concept of a
Fuzion feature and uses a simple intermediate language
that is friendly for static analysis tools as well as for
optimizing compilers.

Fuzion was influenced by many other languages includ-
ing Java, Python, Eiffel, Rust, Ada, Go, Lua, Kotlin, C#,
F#, Nim, Julia, Clojure, C/C++, Scala, and many more.
The goal of Fuzion is to define a language that has the
expressive power present in these languages and allow
high-performance implementation and powerful analy-
sis tools. Furthermore, Fuzion addresses requirements
for safety-critical applications by adding support for
contracts that enable formal specification and detailed
control over runtime checks.

Keywords: safety, static analysis, programming lan-
guage, certification

1 Introduction
Many current programming language are getting more and
more overloaded with new concepts and syntax to solve
particular development or performance issues. Languages
like Java/C# provide classes, interfaces, methods, packages,
anonymous inner classes, local variables, fields, closures, etc.
And these languages are currently extended further by the in-
troductions of records/structs, value types, etc. The possibility
for nesting of these different concepts results in complexity
for the developer and the tools (compilers, VMs) that process
and execute the code.

For example, the possibility to access a local variable as part
of the closure of a lambda expression in Java may result in
the compiler allocating heap space to hold the contents of that
local variable. Hence, the developer has lost control over the
allocation decisions made by the compiler.

In Fuzion, the concepts of classes, interfaces, methods, pack-
ages, fields and local variables are unified in the concept of a

Fuzion feature. The decision where to allocate the memory as-
sociated with a feature (on the heap, the stack or in a register)
is left to the compiler just as well as the decision if dynamic
type information is added or not. The developer is left with
the single concept of a feature, the language implementation
takes care for all the rest.

2 Fuzion Features
A Fuzion applications consists of nested feature declarations.
The main operation performed on a feature is a feature call.

2.1 Components of a Feature Declaration

Feature Name A Fuzion feature is identified by a name,
similar to the name of a class or a function in other languages.
The name may be a plain identifier, or an operator such as
infix + or postfix !, the difference between calling a named
feature or applying an operator is purely syntactical.

Formal Arguments Features may have formal arguments,
which are themselves features implemented as fields. On a
call to a feature with formal arguments, actual arguments have
to be provided to the call.

Result Type The result of a feature call is an instance of the
feature. Alternatively, a feature may declare a different result
type, then it must return a value of that type on a call.

Parametric Types Features may have type parameters.

Closure Features are nested, i.e., every feature is declared
within the context of an outer feature. The only exception is
the universe, which is the outermost feature in any Fuzion
system. A feature can access features declared in its outer
features. This means, a feature declaration also declares a
closure of the feature and its context.

Inheritance Clause Fuzion features can inherit from one
or several other features. When inheriting from an existing
feature, inner features of the parent become inner features of
the heir. Inherited features can be redefined. In particular,
when inheriting from a feature with abstract inner features,
one can implement the inherited abstract features.

Inheritance and redefinition in Fuzion does not require dy-
namic binding. By default, types defined by features are value
types and no runtime overhead for dynamic binding or heap
allocation is imposed by inheritance.

Contract A feature may declare a contract that specifies what
the features does and under which conditions the feature may
be called [1]. This will be handled in more detail below in
the section Design by Contract.

Ada User Jour na l Vo lume X, Number Y, June 2021

2 Fuz ion – Safety through Simpl ic i ty

Implementation Features are implemented as one of

• a routine providing code that is executed on a call,
• a field providing a memory slot that stores a value and

whose contents are returned on a call,
• an abstract feature with no implementation and that can-

not be called directly, but that can be redefined,
• a choice defining a union type, or
• an intrinsic implemented by the compiler or interpreter.

A feature implemented as a routine or as a choice can contain
inner feature declarations.

2.2 Feature Example

Here is an example that declares a feature point that is similar
to a struct or record in other languages:

point(x, y i32) is { } # declare point as a feature with 2 args
p1 := point 3, 4 # create instance of point

2.3 Features as Types

A feature declaration implicitly declares a type of its instances.
In the example above, the feature declaration for point de-
clares the type point that can be used to declare a field, so we
could, e.g., declare a new feature that takes an argument of
type point:

draw(p point) is
drawPixel p.x, p.y

Features implemented as a routine define a product type
whose components are the types of the fields defined for
that routine.

3 Specific Language Features

3.1 Loops

Fuzion has a powerful syntax for loops. Nevertheless, loops
are syntactic sugar that is translated into feature declarations
and tail recursive calls [2]. Loop index variables are automat-
ically immutable and analysis of loop code is simplified.

3.2 Tuples

Tuples in Fuzion are provided by a generic standard library
feature Tuple. The open list of generic parameters specifies
the types of each element and their number. Here is an exam-
ples of a feature that splits a 16-bit unsigned integer v into
two bytes returned as a tuple:

bytes(v u16) => ((v >> 8) & 255, v & 255)

The tuple can be unpacked on a call to bytes:

(hi , lo) := bytes(12345)
say "Bytes: $hi $lo"

Similar to the type defined for a routine, a tuple defines a
product type, but without giving it an explicit name.

3.3 Choice Types

Fuzion provides choice types (also called tagged union or
variant types). The simplest example of a choice type is the
type bool, which is a choice between types TRUE and FALSE.
TRUE and FALSE are themselves declared as features with
no state, i.e., no fields containing any data.

Another example for a choice type from the standard library
is Option<T>, which is a generic choice type that either holds
a value of type T or nil, while nil is a feature with no state
declared in the standard library.

A match statement can be used to distinguish the different
options in a choice type, e.g.,

mayBeString Option<string> = someCall()
match mayBeString

s String => say s
_ nil => say "no string"

Together with the product types provided by tuples or routines,
Fuzion provides algebraic data types.

3.4 First-class Functions

Fuzion offers first-class functions (lambdas) and maps these
to Fuzion features that inherit from a standard library feature
called Function.

4 Design by Contract
Fuzion features can be equipped with pre- and post-conditions
to formally document the requirements that must be met when
a feature is called and the guarantees given by a feature. An
example is a feature that implements a square root function
for 32-bit integers:

sqrt (a i32) i32
pre

a >= 0
post

result ^2 shall be less or equal toa
result ∗ result <= a,
(result+1)^2 shall be larger than a, may overflow i32
(result + 1) > a / (result + 1),
result shall not positive
result >= 0

is
if a == 0

0
else

iteratively calculate root
for

start iteration with 1
r := 1, next
next in iteration is middle of r , a/r
next := (r + a/r) / 2

until r == next
r

In this case, the function defines the pre-condition that its
argument a is non-negative. A call of this function with a
negative value will result in a runtime error. On the other
hand, its post-conditions make a clear statement about the
result: The result will be the largest value that, when squared,
is <= a.

Volume X, Number Y, June 2021 Ada User Jour na l

Dr. Fr id t jo f S ieber t 3

4.1 Checking Pre- and Post-conditions

Pre- and post-conditions can be classified for different pur-
poses. Default qualifiers provided in the standard library are

safety protects pre-conditions that are required for the safety
of an operation.

An example is the index check pre-condition of the intrinsic
operation to access an element of an array: Not performing
the index check would allow arbitrary memory accesses and
typically would break the applications safety.

This qualifier should therefore never be disabled unless you
are running code in an environment where performance is
essential and safety is irrelevant.

debug is generally for debugging, it is set if debugging is
enabled.

debug(n) is specific for enabling checks at a given debug
level, where higher levels include more and more expensive
checks.

pedantic is for conditions that a pedantic purist would require,
that more relaxed hacker would prefer to do without.

analysis is used for conditions that are generally not reason-
able as runtime checks, either because they are prohibitively
expensive or even not at all computable in this finite universe.
These conditions may, however, be very useful for formal
analysis tools that do not execute the code but perform tech-
niques such as abstract interpretation or formal deduction to
reason about the code.

Runtime checks for pre- and post-conditions can be enabled
or disabled for each of these qualifiers. This gives a fine-grain
control over the kind of checks that are desired at runtime.
Usually, one would always want to keep safety checks enabled
in a system that processed data provided from the outside to
avoid vulnerabilities such as buffer overflows. However, in a
closed system like a controller of a launcher, it might make
sense to disable checks if a runtime error would mean definite
loss of the mission, while an unexpected intermediate value
may still result in a useful final result of a calculation.

5 Immutability in Fuzion

Fuzion encourages the use of immutable data by simple syntax
for the declaration of immutable fields. Also, the use of tail
calls for loops automatically converts index variables used in
that loop into immutable variables with a life span of a single
loop iteration.

Since immutability is essential to ensure correctness of par-
allel execution within threads that do not rely on locks or
similar synchronization mechanisms, Fuzion’s analyzer will
verify that data shared between threads is immutable.

6 Memory Management in Fuzion
Fuzion to a large extend relies on static analysis to reduce
memory management overhead. Instances are by default
value instances that do not require heap allocation. Further-
more, immutability in many cases avoids the need to keep a
shared copy on the heap. For dynamic calls, heap allocation
and dynamic binding overhead is avoided by specialization
of calls.

Only for those instances for which all of these optimizations
would fail, in particular instances shared between threads or
long-lived instances with mutable fields, heap allocation will
be required. Memory allocated on the heap will be reclaimed
by a real-time garbage collector [3].

7 Fuzion Implementation
The Fuzion implementation consists of several, independent
parts from a front-end performing parsing and syntax-related
tasks that creates the intermediate representation (IR), via
a middle-end that collects the modules needed by a Fuzion
application, to the analyzers, optimizers and several back-
ends.

7.1 Fuzion IR
Fuzion has a very simple intermediate representation. The
dominant instruction is a call. The only control structure is a
match operation. Loops are replaced by tail recursive calls,
so there is no need in the compiler or analysis tools to handle
loops as long as (tail) recursion is supported and optimized.

Clazzes in the Fuzion IR When creating the intermediate
representation, Fuzion features from the source code are in-
stantiated with actual type parameters. This are referred to as
Fuzion clazzes (sic). Any analysis tool or compiler working
on the IR hence does not need to handle parametric types.

Clazzes come in one of five flavors depending on their under-
lying feature:

• Routine – ’normal’ Fuzion feature with code to execute.
• Field – a feature that can store data.
• Abstract – an abstract Fuzion feature
• Choice – a Fuzion feature that defines a union type.
• Intrinsic – a feature implemented by the compiler.

All clazzes except choices may be equipped with contracts.

Instructions in the Fuzion IR A clazz of type routine con-
tains code that consists of very simple (bytecode-) instructions
using a simple stack machine. There are only eight intermedi-
ate instructions:

• Assign – an assignment to a field
• Box – boxing a value to a (heap-allocated) reference type
• Call – a call to a clazz.
• Current – the current instance
• Const – a constant value of primitive of compound type.
• Match – a match instruction to determine the type of a

value of a choice type
• Tag – create an instance of a choice type from a value

whose type is one of the type parameters of the choice.

Ada User Jour na l Vo lume X, Number Y, June 2021

4 Fuz ion – Safety through Simpl ic i ty

• Pop – remove value from the execution stack, used when
call result is ignored.

The Fuzion IR can be stored in a file called a Fuzion Appli-
cation (fapp) such that the IR can be applied to a variety of
different following steps for static analysis, code generation,
dynamic analysis (code coverage), optimizers, etc.

7.2 Fuzion Analyzer
Static analysis on the Fuzion IR will be used to ensure dif-
ferent aspects of correctness of the application. Tasks for the
analyzer include

• field initialization: ensure that fields are initialized be-
fore accessed. Usually, this is ensured by the Fuzion
syntax, but calls in a routine’s body could result in ac-
cesses to uninitialized fields (as final fields in Java [4]).

• thread safety: ensure that fields accessed by different
threads are immutable when these accesses occur to
achieve thread-safety similar to Rust [5].

• module safety: for a library module to be safely usable
in different context, static analysis should ensure that
no external call could access undefined or intermediate
state.

• ensure that contracts are satisfied. In particular, precon-
ditions of intrinsics that are qualified with safety such
as indexed accesses to arrays could be analyzed stati-
cally [6].

• ensure higher level of correctness defined in contracts
qualified with analysis using quantors (using tools like
KeY [7]).

Currently, the analyzers are still work on in progress, only the
basic analysis required by the back ends is done.

7.3 Fuzion Optimizer
The Fuzion Optimizer modifies the intermediate representa-
tion of a Fuzion application. In particular, it determines the
life spans of values to decide if they can be stack allocated or
need to be heap allocated and it specializes feature implemen-
tations for the actual argument types and the actual generic
arguments provided at each call.

This means that runtime overhead for heap allocation and
garbage collection will be avoided as much as possible, most
values can be allocated on the runtime stack. Additionally,
runtime type information such as vtables will be required only
in very few cases where dynamic binding cannot be avoided.
An example is a data structure like a list of some reference
type with elements of different actual types that are stored in
this list.

7.4 Fuzion Back-Ends
Fuzion currently has two back-ends: An interpreter written in
Java running on OpenJDK and a back-end creating C source
code processed by gcc or clang. It is planned to add further
back-ends, in particular for LLVM and Java bytecode.

Thanks to the very simple intermediate code, the back ends
are relatively simple. The core of the C backend, e.g., consists
of less than 1000 lines of well documented Java code.

7.5 Certification Artifacts
Due to the simple structure of the backend it is expected that
certification of generated code will be simplified. The IR
removes syntactic sugar, but should remain simple enough
to allow for manual analysis and creation of certification
artifacts. Furthermore, it can be expected that qualification
of a backend for use in safety-critical systems will be simpler
compared to other languages.

8 Conclusion / Next Steps
The Fuzion language definition and implementation is still
in an early stage. A first version of the language and its
implementation was presented at FOSDEM 2021 [8]. The
main areas of ongoing work are the definition of a standard
library, interfaces to other languages, IDE integration and
documentation. I expect the presented approach to have a
huge potential, in particular in the safety-critical domain. The
combination of a powerful language with a simple core that
is open for static analysis tools can improve the software
development productivity, the safety of the resulting software
as well as the performance.

9 Availability
Fuzion is available as source code on github [9]. The Fuzion
portal website flang.dev [10] provides an interactive tutorial
with many examples, a tutorial and many background docu-
ments on the design of Fuzion.

References
[1] B. Meyer, “Applying "design by contract",” Computer,

vol. 25, p. 40–51, Oct. 1992.

[2] W. D. Clinger, “Proper tail recursion and space effi-
ciency,” SIGPLAN Not., vol. 33, p. 174–185, May 1998.

[3] F. Siebert, “Concurrent, parallel, real-time garbage-
collection,” in Proceedings of the 2010 International
Symposium on Memory Management, ISMM ’10, (New
York, NY, USA), p. 11–20, Association for Computing
Machinery, 2010.

[4] “Use of uninitialized final field - with/without
’this.’ qualifier.” https://stackoverflow.com/
questions/13864464/, 2012.

[5] S. Klabnik and C. Nichols, The Rust Programming Lan-
guage: Ch. 16 Fearless Concurrenty. USA: No Starch
Press, 2018.

[6] R. Rugina and M. C. Rinard, “Symbolic bounds analysis
of pointers, array indices, and accessed memory regions,”
ACM Trans. Program. Lang. Syst., vol. 27, p. 185–235,
Mar. 2005.

[7] B. Beckert, R. Hähnle, and P. H. Schmitt, Verification of
Object-Oriented Software: The KeY Approach. Berlin,
Heidelberg: Springer-Verlag, 2007.

[8] “FOSDEM.” https://fosdem.org, 2021.

[9] “Fuzion Souces.” https://github.com/
fridis/fuzion.

[10] “Fuzion Portal.” https://flang.dev, 2021.

Volume X, Number Y, June 2021 Ada User Jour na l

https://stackoverflow.com/questions/13864464/
https://stackoverflow.com/questions/13864464/
https://fosdem.org
https://github.com/fridis/fuzion
https://github.com/fridis/fuzion
https://flang.dev

	Introduction
	Fuzion Features
	Components of a Feature Declaration
	Feature Example
	Features as Types

	Specific Language Features
	Loops
	Tuples
	Choice Types
	First-class Functions

	Design by Contract
	Checking Pre- and Post-conditions

	Immutability in Fuzion
	Memory Management in Fuzion
	Fuzion Implementation
	Fuzion IR
	Fuzion Analyzer
	Fuzion Optimizer
	Fuzion Back-Ends
	Certification Artifacts

	Conclusion / Next Steps
	Availability

