☰
entry
container.ordered_map.entry
Functions
create a String from this instance. Unless redefined, `a.as_string` will
create `"instance[T]"` where `T` is the dynamic type of `a`
create `"instance[T]"` where `T` is the dynamic type of `a`
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierachy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierachy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
is `this` contained in `Set` `s`?
This should usually be called using type inference as in
my_set := set_of ["A","B","C"]
say ("B" ∈ my_set)
say ("D" ∈ my_set)
This should usually be called using type inference as in
my_set := set_of ["A","B","C"]
say ("B" ∈ my_set)
say ("D" ∈ my_set)
is `this` not contained in `Set` `s`?
This should usually be called using type inference as in
my_set := set_of ["A","B","C"]
say ("B" ∉ my_set)
say ("D" ∉ my_set)
This should usually be called using type inference as in
my_set := set_of ["A","B","C"]
say ("B" ∉ my_set)
say ("D" ∉ my_set)
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
Type Features
equality implements the default equality relation for values of this type.
This relation must be
- reflexive (equality a b),
- symmetric (equality a b = equality b a), and
- transitive ((equality a b && equality b c) : equality a c).
result is true iff 'a' is considered to represent the same abstract value
as 'b'.
This relation must be
- reflexive (equality a b),
- symmetric (equality a b = equality b a), and
- transitive ((equality a b && equality b c) : equality a c).
result is true iff 'a' is considered to represent the same abstract value
as 'b'.
total order over entries.
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
index i of the ordered map.