☰
Buffer
container.Buffer
Functions
create immutable array from this buffer
create a list from this buffer
Get the dynamic type of this instance. For value instances `x`, this is
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierachy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
equal to `type_of x`, but for `x` with a `ref` type `x.dynamic_type` gives
the actual runtime type, while `type_of x` results in the static
compile-time type.
There is no dynamic type of a type instance since this would result in an
endless hierachy of types. So for Type values, dynamic_type is redefined
to just return Type.type.
set element at given index i to given value o
a sequence of all valid indices to access this array. Useful e.g., for
`for`-loops:
for i in arr.indices do
`for`-loops:
for i in arr.indices do
name of this type, including type parameters, e.g. 'option (list i32)'.
convenience prefix operator to create a string from a value.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
This permits usage of `$` as a prefix operator in a similar way both
inside and outside of constant strings: $x and "$x" will produce the
same string.
Type Features
Get a type as a value.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
This is a feature with the effect equivalent to Fuzion's `expr.type` call tail.
It is recommended to use `expr.type` and not `expr.type_value`.
`type_value` is here to show how this can be implemented and to illustrate the
difference to `dynamic_type`.
Buffer can be used to implement ranges of mutable memory that may be
visible to the outside or even may be modified by the outside. Examples
are memory mapped files, memory shared between processes, bitmaps on a
display, memory mapped I/O, etc.
To model the effects of reading or writing a buffer, an effect is given
as an argument to a buffer. This effect should implement the operations
required to implement the `index []` and `set []` features as needed by
the backend. This could be done via direct memory accesses, as for `mmap`
memory used in a native backend, or via an API such as `java.nio.ByteBuffer`
for a JVM backend.